We examined the effects of carbohydrate (CHO) delivery form on exogenous CHO oxidation, gastrointestinal discomfort, and exercise capacity. In a randomised repeated measures design (after 24 h of high CHO intake (8 g·kg -1) and pre-exercise meal (2 g·kg -1)), nine trained males ingested 120 g CHO·h -1 from fluid (DRINK), semi-solid gel (GEL), solid jelly chew (CHEW), or a co-ingestion approach (MIX). Participants cycled for 180 min at 95% lactate threshold followed by an exercise capacity test (150% lactate threshold). Peak rates of exogenous CHO oxidation (DRINK, 1.56 ± 0.16; GEL, 1.58 ± 0.13; CHEW, 1.59 ± 0.08; MIX, 1.66 ± 0.02 g·min -1) and oxidation efficiency (DRINK, 72 ± 8; GEL, 72 ± 5; CHEW, 75 ± 5; MIX, 75 ± 6%) were not different between trials (all P > 0.05). Despite ingesting 120 g·h -1, participants reported minimal symptoms of gastrointestinal distress across all trials. Exercise capacity was also not significantly different (all P < 0.05) between conditions (DRINK, 446 ± 350; GEL, 529 ± 396; CHEW, 596 ± 416; MIX, 469 ± 395 sec). Data represent the first time that rates of exogenous CHO oxidation (via stable isotope methodology) have been simultaneously assessed using feeding strategies (i.e., pre-exercise CHO feeding and the different forms and combinations of CHO during exercise) commonly adopted by elite endurance athletes. We conclude 120 g·h -1 CHO (in a 1:0.8 ratio of maltodextrin or glucose:fructose) is a practically tolerable strategy to promote high CHO availability and oxidation during exercise.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.