52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Membrane materials for water purification: design, development, and application

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New membrane technologies based on novel organic, inorganic, and hybrid materials and with unprecedented functionality are reviewed.

          Water purification for human use, ecosystem management, agriculture, and industry is emerging as a leading global priority. Access to sufficient clean water ultimately requires improvements over the current state of water filtration technology. Membrane technologies for water purification have been actively pursued for decades, but with recent innovation of both analytical and fabrication tools, more advanced membrane technologies are surfacing. Here, we review the design, development, and application of new membrane materials, fabrication methods for controlling the filtration size regime, analytical tools for performance testing, and molecular modeling for transport and separation. Membrane chemical stability, fouling, and environmental impact as open questions are also presented.

          Related collections

          Most cited references249

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Graphene: Status and Prospects

          A. K. Geim (2010)
          Graphene is a wonder material with many superlatives to its name. It is the thinnest material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have the smallest effective mass (it is zero) and can travel micrometer-long distances without scattering at room temperature. Graphene can sustain current densities 6 orders higher than copper, shows record thermal conductivity and stiffness, is impermeable to gases and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a bench-top experiment. What are other surprises that graphene keeps in store for us? This review analyses recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Atomic layer deposition: an overview.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A review on the visible light active titanium dioxide photocatalysts for environmental applications

                Bookmark

                Author and article information

                Journal
                ESWRAR
                Environmental Science: Water Research & Technology
                Environ. Sci.: Water Res. Technol.
                Royal Society of Chemistry (RSC)
                2053-1400
                2053-1419
                2016
                2016
                : 2
                : 1
                : 17-42
                Article
                10.1039/C5EW00159E
                e52733a0-5219-474d-93b8-d7d33ff26434
                © 2016
                History

                Comments

                Comment on this article