32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Image Segmentation under the Optimization Algorithm of Krill Swarm and Machine Learning

      research-article
      1 , 2 , 3 ,
      Computational Intelligence and Neuroscience
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aims to improve the efficiency and accuracy of image segmentation, and to compare and study traditional threshold-based image segmentation methods and machine learning model-based image segmentation methods. The krill herb optimization algorithm is combined with the traditional maximum between-class variance function to form a new graph segmentation algorithm. The pet dataset is used to train the algorithm model and build an image semantic segmentation system. The results show that when the traditional Ostu algorithm performs image single-threshold segmentation, the number of iterations is about 256. When double-threshold segmentation is performed, the number of iterations increases exponentially, and the execution time is about 2 s. The number of iterations of the improved Krill Herd algorithm in single-threshold segmentation is 6.95 times, respectively. The execution time for double-threshold segmentation is about 0.24 s. The number of iterations is only improved by a factor of 0.19. The average classification accuracy of the Unet network model and the SegNet network model is 86.3% and 91.9%, respectively. The average classification accuracy of the DC-Unet network model reaches 93.1%. This shows that the proposed fusion algorithm has high optimization efficiency and stronger practicability in multithreshold image segmentation. The DC-Unet network model can improve the image detail segmentation effect. The research provides a new idea for finding an efficient and accurate image segmentation method.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

          In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation

            Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Computer Vision Techniques in Construction: A Critical Review

                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Intell Neurosci
                Comput Intell Neurosci
                cin
                Computational Intelligence and Neuroscience
                Hindawi
                1687-5265
                1687-5273
                2022
                24 March 2022
                : 2022
                : 8771650
                Affiliations
                1School of Big Data & Software Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China
                2Chongqing Key Laboratory of Public Big Data Security Technology, Chongqing 401420, China
                3School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
                Author notes

                Academic Editor: Vijay Kumar

                Author information
                https://orcid.org/0000-0001-7045-9683
                https://orcid.org/0000-0003-0063-8816
                Article
                10.1155/2022/8771650
                8970905
                35371201
                e6b8df82-bc6f-4b6c-8e01-b1d5a56f6226
                Copyright © 2022 Qiang Geng and Huifeng Yan.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 February 2022
                : 21 February 2022
                : 5 March 2022
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article