Processing math: 100%
42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nonperturbative-transverse-momentum effects and evolution in dihadron and direct photon-hadron angular correlations in p\(+p\) collisions at s=510 GeV

      Preprint
      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dihadron and isolated direct photon-hadron angular correlations are measured in p\[+\]p collisions at s=510 GeV. Correlations of charged hadrons of 0.7<pT<10 GeV/c with π0 mesons of 4<pT<15 GeV/c or isolated direct photons of 7<pT<15 GeV/c are used to study nonperturbative effects generated by initial-state partonic transverse momentum and final-state transverse momentum from fragmentation. The nonperturbative behavior is characterized by measuring the out-of-plane transverse momentum component pout perpendicular to the axis of the trigger particle, which is the high-pT direct photon or π0. Nonperturbative evolution effects are extracted from Gaussian fits to the away-side inclusive-charged-hadron yields for different trigger-particle transverse momenta (ptrigT). The Gaussian widths and root mean square of pout are reported as a function of the interaction hard scale ptrigT to investigate possible transverse-momentum-dependent evolution differences between the π0-h± and direct photon-h± correlations and factorization breaking effects. The widths are found to decrease with ptrigT, which indicates that the Collins-Soper-Sterman soft factor is not driving the evolution with the hard scale in nearly back-to-back dihadron and direct photon-hadron production in p\[+\]p collisions. This behavior is in contrast to Drell-Yan and semi-inclusive deep-inelastic scattering measurements.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          New parton distributions for collider physics

          We extract new parton distribution functions (PDFs) of the proton by global analysis of hard scattering data in the general-mass framework of perturbative quantum chromodynamics. Our analysis includes new theoretical developments together with the most recent collider data from deep-inelastic scattering, vector boson production, and single-inclusive jet production. Due to the difficulty in fitting both the DO Run-II W lepton asymmetry data and some fixed-target DIS data, we present two families of PDFs, CT10 and CT10W, without and with these high-luminosity W lepton asymmetry data included in the global analysis. With both sets of PDFs, we study theoretical predictions and uncertainties for a diverse selection of processes at the Fermilab Tevatron and the CERN Large Hadron Collider.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            PYTHIA 6.4 Physics and Manual

            The PYTHIA program can be used to generate high-energy-physics `events', i.e. sets of outgoing particles produced in the interactions between two incoming particles. The objective is to provide as accurate as possible a representation of event properties in a wide range of reactions, within and beyond the Standard Model, with emphasis on those where strong interactions play a role, directly or indirectly, and therefore multihadronic final states are produced. The physics is then not understood well enough to give an exact description; instead the program has to be based on a combination of analytical results and various QCD-based models. This physics input is summarized here, for areas such as hard subprocesses, initial- and final-state parton showers, underlying events and beam remnants, fragmentation and decays, and much more. Furthermore, extensive information is provided on all program elements: subroutines and functions, switches and parameters, and particle and process data. This should allow the user to tailor the generation task to the topics of interest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              New Generation of Parton Distributions with Uncertainties from Global QCD Analysis

              A new generation of parton distribution functions with increased precision and quantitative estimates of uncertainties is presented. This work significantly extends previous CTEQ and other global analyses on two fronts: (i) a full treatment of available experimental correlated systematic errors for both new and old data sets; (ii) a systematic and pragmatic treatment of uncertainties of the parton distributions and their physical predictions, using a recently developed eigenvector-basis approach to the Hessian method. The new gluon distribution is considerably harder than that of previous standard fits. A number of physics issues, particularly relating to the behavior of the gluon distribution, are addressed in more quantitative terms than before. Extensive results on the uncertainties of parton distributions at various scales, and on parton luminosity functions at the Tevatron RunII and the LHC, are presented. The latter provide the means to quickly estimate the uncertainties of a wide range of physical processes at these high-energy hadron colliders, based on current knowledge of the parton distributions. In particular, the uncertainties on the production cross sections of the W,Z at the Tevatron and the LHC are estimated to be ±4 and ±5 respectively, and that of a light Higgs at the LHC to be ±5.
                Bookmark

                Author and article information

                Journal
                2016-09-15
                Article
                1609.04769
                ee9a52cf-6345-41f6-a6e8-b64f608ee1da

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                434 authors, 19 pages, 15 figures, 2 tables. Submitted to Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.html
                hep-ex nucl-ex

                High energy & Particle physics,Nuclear physics
                High energy & Particle physics, Nuclear physics

                Comments

                Comment on this article