15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Time Series Data Filling Method Based on LSTM—Taking the Stem Moisture as an Example

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to solve the problem of data loss in sensor data collection, this paper took the stem moisture data of plants as the object, and compared the filling value of missing data in the same data segment with different data filling methods to verify the validity and accuracy of the stem water filling data of the LSTM (Long Short-Term Memory) model. This paper compared the accuracy of missing stem water data for plants under different data filling methods to solve the problem of data loss in sensor data collection. Original stem moisture data was selected from Lagerstroemia Indica which was planted in the Haidian District of Beijing in June 2017. Part of the data which treated as missing data was manually deleted. Interpolation methods, time series statistical methods, the RNN (Recurrent Neural Network), and LSTM neural network were used to fill in the missing part and the filling results were compared with the original data. The result shows that the LSTM has more accurate performance than the RNN. The error values of the bidirectional LSTM model are the smallest among several models. The error values of the bidirectional LSTM are much lower than other methods. The MAPE (mean absolute percent error) of the bidirectional LSTM model is 1.813%. After increasing the length of the training data, the results further proved the effectiveness of the model. Further, in order to solve the problem of one-dimensional filling error accumulation, the LSTM model is used to conduct the multi-dimensional filling experiment with environmental data. After comparing the filling results of different environmental parameters, three environmental parameters of air humidity, photosynthetic active radiation, and soil temperature were selected as input. The results show that the multi-dimensional filling can greatly extend the sequence length while maintaining the accuracy, and make up for the defect that the one-dimensional filling accumulates errors with the increase of the sequence. The minimum MAPE of multidimensional filling is 1.499%. In conclusion, the data filling method based on LSTM neural network has a great advantage in filling the long-lost time series data which would provide a new idea for data filling.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ImageNet classification with deep convolutional neural networks

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

              In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                05 September 2020
                September 2020
                : 20
                : 18
                : 5045
                Affiliations
                [1 ]School of Technology, Beijing Forestry University, Beijing 100083, China; Nintendo@ 123456bjfu.edu.cn (W.S.); zhaoyue0609@ 123456126.com (Y.Z.)
                [2 ]Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
                [3 ]School of Computer and Information Engineering, Beijing Technology and Business University, Beijing 100048, China; gaochao9158@ 123456btbu.edu.cn
                Author notes
                [* ]Correspondence: yandongzh@ 123456bjfu.edu.cn ; Tel.: +86-010-6233-6922
                Author information
                https://orcid.org/0000-0001-5117-5757
                Article
                sensors-20-05045
                10.3390/s20185045
                7571071
                32899485
                f57a73ba-3e3f-4ebe-a7e8-563f3fd52183
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 July 2020
                : 03 September 2020
                Categories
                Article

                Biomedical engineering
                data filling,lstm neural network,missing data,stem moisture
                Biomedical engineering
                data filling, lstm neural network, missing data, stem moisture

                Comments

                Comment on this article