The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen), with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs). SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome.) To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of human genomes at maximum accuracy and low cost.
In recent years, the development of high throughput sequencing and array technologies has enabled the accurate re-sequencing of individual genomes, especially in identifying and reconstructing the variants in an individual's genome compared to a “reference”. The costs and sensitivities of these technologies differ considerably from each other, and even more technologies are expected to appear in the near future. To both reduce the total cost of re-sequencing to an affordable point and be adaptive to these constantly evolving bio-technologies, we propose to build a computationally efficient simulation framework that can help us optimize the combination of different technologies to perform low cost comparative genome re-sequencing, especially in reconstructing large structural variants, which is considered in many respects the most challenging step in genome re-sequencing. Our simulation results quantitatively show how much improvement one can gain in reconstructing large structural variants by integrating different technologies in optimal ways. We envision that in the future, more experimental technologies will be incorporated into this simulation framework and its results can provide informative guidelines for the actual experimental design to achieve optimal genome re-sequencing output at low costs.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.