Farmland soils are prone to contamination with micro- and nanoplastics through a variety of agricultural practices. Concerns are recurrently raised that micro- and nanoplastics act as vector for organic contaminants to deeper soil layers and endanger groundwater resources. Whether and to what extent micro- and nanoplastics facilitate the transport of organic contaminants in soil remains unclear. Here we calculated the ratio between transport and desorption time scales using two diffusion models for micro- and nanoplastics between 100 nm and 1 mm. To identify micro- and nanoplastics bound contaminant transport we evaluated diffusion and partitioning coefficients of prominent agrochemicals and additives and of frequently used polymers e.g., polyethylene and tire material. Our findings suggest that the desorption of most organic contaminants is too fast for micro- and nanoplastics to act as transport facilitators in soil. Contaminant transport enabled by microplastics was found to be relevant only for very hydrophobic contaminants (log K ow >5) under preferential flow conditions. While micro- and nanoplastics might be a source of potentially harmful contaminants in farmland soils this study suggests that they do not considerably enhance contaminant mobility.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.