Supplementary Material for 'Estimation of Clinical Trial Success Rates and Related Parameters'



A1. Data

Fig. S1. Summary of the entire dataset of 406,038 data points, consisting of 185,994 unique trials. Of these, 34.7% are industry-sponsored (n=141,086) and the remaining 65.3% are non-industry sponsored (n=264,952). The trials span from January 1, 2000, to October 31, 2015.

| TrialID | Therapeutic  | Drug Name  | Phase | Disease Type  | Start Date | End Date   | Sponsor                     |
|---------|--------------|------------|-------|---------------|------------|------------|-----------------------------|
|         | Area         |            |       |               |            |            |                             |
| 48391   | Autoimmune/  | Loratadine | I/2   | Allergic      | NULL       | 2003-06-07 | (Other Hospital/ Academic/  |
|         | Inflammation |            |       | Rhinitis      |            |            | Medical Center)             |
| 70538   | Autoimmune/  | Loratadine | 3     | Allergic      | NULL       | 2007-09-18 | (Other Hospital/ Academic/  |
|         | Inflammation |            |       | Rhinitis      |            |            | Medical Center)             |
| 100378  | Autoimmune/  | Loratadine | 3     | Asthma        | NULL       | 2008-10-29 | Merck & Co.                 |
|         | Inflammation |            |       |               |            |            |                             |
| 122164  | Autoimmune/  | Loratadine | 4     | Allergic      | 2010-01-01 | 2012-03-01 | (Other Hospital/ Academic/  |
|         | Inflammation |            |       | Rhinitis      |            |            | Medical Center)             |
| 151465  | CNS          | Loratadine | 3     | Pain          | 2011-05-01 | 2014-05-14 | Cancer and Leukemia Group B |
|         |              |            |       | (nociceptive) |            |            | (CALGB)                     |
| 153368  | Autoimmune/  | Loratadine | I     | Asthma        | NULL       | 2006-07-01 | (Other Hospital/ Academic/  |
|         | Inflammation |            |       |               |            |            | Medical Center)             |

Table S1. Sample of Citeline data entries. Our algorithm processes such data to identify drug development programs and compute their statistics.



Fig. S2. (Top) We define a drug development path as the development of a drug for a specific indication. The diagram illustrates 4 drug development paths for a single drug. (Bottom) Observed and unobserved states in a drug development program, from Phase 1 to Approval. A drug development program is in Phase i if it has at least one trial in Phase i.

#### A2. Path-by-path vs. phase-by-phase

This paper uses the path-by-path method of computing the probability of success, where we identify all the drug development paths before computing the proportion of paths that make it through from Phase 1 to approval. In contrast, the phase-by-phase method computes the proportion of observed phase transitions from one phase to the next before multiplying the individual probabilities in each stage to produce the overall probability of success.

It is not uncommon for datasets to contain missing data points. For example, for some drugs and indications, we observe Phase 1 trials and Phase 3 trials, but not Phase 2 trials. This may occur because there is an error in data collection and data processing, or for other reasons.

Wong, Siah & Lo



Fig. S3. In this example, we do not observe any Phase 2 trials for Drug Development 001. Our idealized model imputes the phase for the drug development and our 'path-by-path' method computes  $POS_{1,2}$ ,  $POS_{2,3}$ ,  $POS_{3,APP}$ , and  $POS_{1,APP}$  to be 1,  $\frac{2}{3}$ ,  $\frac{1}{2}$  and  $\frac{1}{3}$ , respectively. In contrast, the 'phase-by-phase' method does not impute the phase and will compute  $POS_{1,2}$ ,  $POS_{2,3}$ ,  $POS_{3,APP}$ , and  $POS_{1,APP}$  to be 1,  $\frac{1}{2}$ ,  $\frac{1}{2}$ , and  $\frac{1}{4}$ , respectively. In  $POS_{1,APP}$ , and  $POS_{1,APP}$  to be 1,  $\frac{1}{2}$ ,  $\frac{1}{2}$ , and  $\frac{1}{4}$ , respectively.

We treat these cases as successes in our methodology. While we acknowledge that this may produce higher success rates for Phase 1 and Phase 2 trials, we find it only logical to include these 'missing' data points, as they definitely must have occurred in a development path. (We give an example of how the phase-by-phase method underestimates the POS in Figure S3.) In addition, we perform Monte Carlo simulations to demonstrate the impact of ignoring 'missing' phase transitions. Setting the POS<sub>1,2</sub>, POS<sub>2,3</sub>, and POS<sub>3,App</sub> to be 0.5, we generate 1,000 drug development paths randomly and corrupt them to simulate missing phase transitions. We then run the phase-by-phase and path-by-path computations on the simulated data. As can be seen in Figure S4, which plots the means of 1,000 such runs, the path-by-path method accurately estimates the POS, while the phase-by-phase method underestimates the POS.

However, the path-by-path approach is not suitable in analyzing instances where one does not have the full information about the drug development programs, such as a rolling-window computation where the time window is much shorter than the complete drug development period (typically around a decade). This is because our algorithm aggressively imputes the 'missing' phase transitions when it is given only a snippet of information. We give a fictitious example to



Fig. S4. Simulations of the computed POS using the phase-by-phase and path-by-path approaches. Results shown are the mean of 1,000 runs of 1,000 simulated drug paths with randomly corrupted phase transitions. The phase-by-phase approach consistently underestimates the POS in the presence of missing phase transitions.

illustrate this point.

Consider the following fictitious drug development program X.

| $Drug \ Development \ Program \ X$ |                  |                     |  |  |  |  |  |  |  |  |
|------------------------------------|------------------|---------------------|--|--|--|--|--|--|--|--|
| Phase                              | Start Date       | End Date            |  |  |  |  |  |  |  |  |
| 1                                  | Jan 2000         | Jun 2000            |  |  |  |  |  |  |  |  |
| 2                                  | Feb 2001         | July 2003           |  |  |  |  |  |  |  |  |
| 3                                  | ${\rm Mar}~2004$ | $\mathrm{Dec}~2007$ |  |  |  |  |  |  |  |  |

The output of the different computation methods for the various 3-year time windows is as follows:

| Time Window             | Observed Phase | Path-by-Path               | Phase-by-Phase    |
|-------------------------|----------------|----------------------------|-------------------|
| Jan 2000 to Dec 2002    | 1              | Phase 1 completed          | Phase 1 completed |
| Jan 2001 to Dec 2003 $$ | 2              | Phases 1 & 2 completed     | Phase 2 completed |
| Jan 2002 to Dec $2004$  | 2              | Phases 1 & 2 completed     | Phase 2 completed |
| Jan 2003 to Dec 2005    | 2              | Phases 1 & 2 completed     | Phase 2 completed |
| Jan 2004 to Dec 2006    | No observation | N.A.                       | N.A.              |
| Jan 2005 to Dec $2007$  | 3              | Phases 1 & 2 & 3 completed | Phase 3 completed |

As can be seen, our algorithm inferred all the phase transitions for the drug development project given the latest information at that point in time. While the algorithm works accurately when one has a massive database across long time horizons, it is unable to provide an accurate assessment of changes in success rates over short time windows. In our example, the Phase 1 trial is repeatedly counted as a success across multiple time windows, and this inflates the estimate of the success rate of Phase 1 trials in a short interval. When this situation occurs, we use the phase-by-phase approach.

A subtle but important difference between the two computation methods is that, while the path-by-path approach measures the proportion of *drug development projects* that progress, the phase-by-phase approach measures the proportion of *phase transitions* that occur. The two measures will produce the same results if there is no missing data point. However, these conditions do not hold true in real life clinical trial databases. By applying the phase-by-phase algorithm to the entire dataset, our evaluation is that it tends to underestimate the success rate. Nevertheless, the latter method is a strong enough proxy to estimate trends in drug development success rates.

#### A3. Algorithm

```
Algorithm 1 - Identifying trials in a drug development and computing the probability of success
Initialize count_12_succ = count_12_fail = count_23_succ = count_23_fail = count_3a_succ =
count_3a_fail = 0
for every pair {drug, indication}, do:
    Filter and populate a list of trials on indication using drug;
    if Drug is approved, then
        count 12 succ++;
        count 23 succ++;
        count_3a_succ++;
        continue;
    if there exists >=1 trial in Phase 3, then
        count_12_succ++;
        count_23_succ++;
        if latest end date of Phase 3 trials is < T - t3, then
             count_3a_fail++;
        continue;
    if there exists >=1 trial in Phase 2 then
        count_12_succ++;
        if latest end date of Phase 2 trials is < T - t2, then
             count 23 fail++;
        continue;
    if there exists >=1 trial in Phase 1 and if the latest end date is < T - t1, then
        count_12_fail++;
end
```

Fig. S5. An algorithm for identifying trials in drug development programs and computing the probability of success.

#### A4. All indications versus lead indications

The model and algorithm presented in SECTION A3 considered each drug-indication pair as a unique development path. Some analysts, however, are interested in the lead indication for a given drug, i.e., the indication that has progressed furthest in the development pipeline. If there is more than one indication in the highest phase of the pipeline, the indication that reached the phase first will be considered the lead indication. Indication B in Fig. S2 is the lead indication, as it is the only indication for which the drug is approved. We argue that using lead indications in financial analysis is problematic.

First, the definition of lead indication makes it confusing to analyze phase transition proba-

bilities. Consider the following example: Suppose that a company at time t completes Phase 2 clinical trials for two indications, Ind\_A and Ind\_B. It then decides to conduct a Phase 3 trial for Ind\_A, making Ind\_A the lead indication for the drug at t + 1. A short time later, at t + 2, the company reconsiders its priorities, and decides to accelerate development of the drug for Ind\_B. Ind\_B makes it to the market earlier than Ind\_A, and is now the lead indication for the drug. Hence, depending on when one takes a snapshot of the data, one may end up with different lead indications and estimates of the indication-specific phase transition probabilities. As such, considering all indications in computing the phase transition probabilities is more robust and accurate.

Second, from a financial perspective, it may be more informative to use indication-specific drug development paths to compute the different metrics. Very often, a New Drug Application (NDA) specifies the indication and dosage that the drug is intended to treat, and a company would need to resubmit another application if they wish to market it for another disease or dosage. Since the patient segment determines the market size and thus the financial potential of the drug, it is more appropriate to use indication-specific probabilities in the financial analysis of drug development endeavors.

| Average Number of Indications Per Drug |      |         |                               |      |         |  |  |  |  |  |
|----------------------------------------|------|---------|-------------------------------|------|---------|--|--|--|--|--|
|                                        | Mean | Std Dev |                               | Mean | Std Dev |  |  |  |  |  |
| Oncology                               | 2.61 | 3.24    | Genitourinary                 | 1.06 | 0.25    |  |  |  |  |  |
| Metabolic/Endocrinology                | 1.38 | 0.71    | Infectious Disease            | 1.5  | 0.72    |  |  |  |  |  |
| Cardiovascular                         | 1.3  | 0.65    | Ophthalmology                 | 1.25 | 0.48    |  |  |  |  |  |
| CNS                                    | 1.26 | 0.60    | Vaccines (Infectious Disease) | 1.91 | 0.48    |  |  |  |  |  |
| Autoimmune/Inflammation                | 1.34 | 0.81    | Overall                       | 1.74 | 1.95    |  |  |  |  |  |

A5. Testing multiple indications

Table S2. Average number of indications per drug, computed using the entire dataset from January 1, 2000, to October 31, 2015.

| A6. Additional Results for Biomarker Trial | $\mathbf{S}$ |
|--------------------------------------------|--------------|
|--------------------------------------------|--------------|

|                      |                | Phase                      | 1 to Phase             | 2       | Phase                      | 2 to Phase             | 3       | Phase                      | 3 to Approva             | ıl      | Overall |         |
|----------------------|----------------|----------------------------|------------------------|---------|----------------------------|------------------------|---------|----------------------------|--------------------------|---------|---------|---------|
| Therapeutic Group    |                | Total Phase<br>Transitions | POS <sub>1,2</sub> , % | (SE, %) | Total Phase<br>Transitions | POS <sub>2,3</sub> , % | (SE, %) | Total Phase<br>Transitions | POS <sub>3,APP</sub> , % | (SE, %) | POS, %  | (SE, %) |
| Oncology             | No Biomarker   | 5,499                      | 26.3                   | (0.6)   | 3,190                      | 16.2                   | (0.7)   | 903                        | 33.6                     | (1.6)   | 1.4     | (0.2)   |
|                      | With Biomarker | 4,986                      | 33.5                   | (0.7)   | 2,325                      | 25.8                   | (0.9)   | 333                        | 40.8                     | (2.7)   | 3.5     | (0.4)   |
|                      | All            | 10,485                     | 29.7                   | (0.4)   | 5,515                      | 20.3                   | (0.5)   | 1,236                      | 35.5                     | (1.4)   | 2.1     | (0.2)   |
| Metabolic/           | No Biomarker   | 1,424                      | 45.5                   | (1.3)   | 1,214                      | 34.5                   | (1.4)   | 865                        | 54.1                     | (1.7)   | 8.5     | (0.9)   |
| Endocrinology        | With Biomarker | 115                        | 33.0                   | (4.4)   | 226                        | 31.0                   | (3.1)   | 236                        | 42.4                     | (3.2)   | 4.3     | (1.5)   |
|                      | All            | 1,539                      | 44.6                   | (1.3)   | 1,440                      | 34.0                   | (1.2)   | 1,101                      | 51.6                     | (1.5)   | 7.8     | (0.8)   |
| Cardiovascular       | No Biomarker   | 1,117                      | 38.1                   | (1.5)   | 711                        | 36.8                   | (1.8)   | 673                        | 67.5                     | (1.8)   | 9.5     | (1.1)   |
|                      | With Biomarker | 131                        | 55.0                   | (4.3)   | 321                        | 41.1                   | (2.7)   | 291                        | 50.2                     | (2.9)   | 11.3    | (2.5)   |
|                      | All            | 1,248                      | 39.9                   | (1.4)   | 1,032                      | 38.2                   | (1.5)   | 964                        | 62.2                     | (1.6)   | 9.5     | (1.0)   |
| CNS                  | No Biomarker   | 2,011                      | 40.3                   | (1.1)   | 1,858                      | 29.9                   | (1.1)   | 1,049                      | 51.2                     | (1.5)   | 6.2     | (0.6)   |
|                      | With Biomarker | 212                        | 43.9                   | (3.4)   | 234                        | 32.5                   | (3.1)   | 107                        | 50.5                     | (4.8)   | 7.2     | (2.1)   |
|                      | All            | 2,223                      | 40.7                   | (1.0)   | 2,092                      | 30.2                   | (1.0)   | 1,156                      | 51.1                     | (1.5)   | 6.3     | (0.6)   |
| Autoimmune/          | No Biomarker   | 2,227                      | 37.7                   | (1.0)   | 1,765                      | 24.9                   | (1.0)   | 867                        | 64.0                     | (1.6)   | 6.0     | (0.6)   |
| Inflammation         | With Biomarker | 288                        | 49.0                   | (2.9)   | 355                        | 28.5                   | (2.4)   | 102                        | 60.8                     | (4.8)   | 8.5     | (2.0)   |
|                      | All            | 2,515                      | 39.0                   | (1.0)   | 2,120                      | 25.5                   | (0.9)   | 969                        | 63.7                     | (1.5)   | 6.3     | (0.6)   |
| Genitourinary        | No Biomarker   | 354                        | 33.9                   | (2.5)   | 271                        | 28.4                   | (2.7)   | 204                        | 65.2                     | (3.3)   | 6.3     | (1.5)   |
|                      | With Biomarker | 10                         | 70.0                   | (14.5)  | 16                         | 37.5                   | (12.1)  | 8                          | 100.0                    | (0.0)   | 26.3    | (15.7)  |
|                      | All            | 364                        | 34.9                   | (2.5)   | 287                        | 28.9                   | (2.7)   | 212                        | 66.5                     | (3.2)   | 6.7     | (1.5)   |
| Infectious Disease   | No Biomarker   | 1,888                      | 40.1                   | (1.1)   | 1,372                      | 34.1                   | (1.3)   | 1,007                      | 75.1                     | (1.4)   | 10.3    | (0.9)   |
|                      | With Biomarker | 79                         | 32.9                   | (5.3)   | 108                        | 44.4                   | (4.8)   | 71                         | 78.9                     | (4.8)   | 11.5    | (4.2)   |
|                      | All            | 1,967                      | 39.8                   | (1.1)   | 1,480                      | 34.9                   | (1.2)   | 1,078                      | 75.3                     | (1.3)   | 10.5    | (0.9)   |
| Ophthalmology        | No Biomarker   | 172                        | 54.7                   | (3.8)   | 256                        | 35.2                   | (3.0)   | 186                        | 72.0                     | (3.3)   | 13.8    | (3.0)   |
|                      | With Biomarker | 9                          | 0.0                    | (0.0)   | 21                         | 28.6                   | (9.9)   | 21                         | 100.0                    | (0.0)   | 0.0     | (0.0)   |
|                      | All            | 181                        | 51.9                   | (3.7)   | 277                        | 34.7                   | (2.9)   | 207                        | 74.9                     | (3.0)   | 13.5    | (2.8)   |
| Vaccines             | No Biomarker   | 718                        | 41.4                   | (1.8)   | 748                        | 33.2                   | (1.7)   | 597                        | 85.8                     | (1.4)   | 11.8    | (1.4)   |
| (Infectious Disease) | With Biomarker | 15                         | 13.3                   | (8.8)   | 18                         | 11.1                   | (7.4)   | 12                         | 66.7                     | (13.6)  | 1.0     | (2.3)   |
|                      | All            | 733                        | 40.8                   | (1.8)   | 766                        | 32.6                   | (1.7)   | 609                        | 85.4                     | (1.4)   | 11.4    | (1.3)   |
| Overall              | No Biomarker   | 15,410                     | 35.3                   | (0.4)   | 11,385                     | 27.0                   | (0.4)   | 6,351                      | 60.7                     | (0.6)   | 5.8     | (0.2)   |
|                      | With Biomarker | 5,845                      | 35.0                   | (0.6)   | 3,624                      | 28.8                   | (0.8)   | 1,181                      | 50.0                     | (1.5)   | 5.0     | (0.4)   |
|                      | All            | 21,255                     | 35.2                   | (0.3)   | 15,009                     | 27.4                   | (0.4)   | 7,532                      | 59.0                     | (0.6)   | 5.7     | (0.2)   |

Table S3. Probability of success with and without biomarkers, using data from January 1, 2005, to October 31, 2015, computed using the phase-by-phase method. These results consider trials that have the objective of evaluating or identifying the use of any novel biomarkers as indicators of therapeutic efficacy or toxicity, in addition to patient stratification. Since for the majority (92.3%) of trials using biomarkers their status is observed only on or after January 1, 2005, the choice of the time period is to ensure a fair comparison between trials using and not using biomarkers.

A7. COMPARISON OF RESULTS FOR BIOMARKER TRIALS AGAINST THOMAS and others (2016) Our results for trials using biomarkers are very different from extant papers such as Thomas and others (2016). The authors of Thomas and others (2016) kindly shared their analysis with us, allowing us to compare and contrast the methodologies and results. The main differences between the two analyses are in the identification of phase transitions, the application of filters, and the quantity of data (see Table S4).

|                    | Thomas and others (2016)              | This paper                            |  |  |
|--------------------|---------------------------------------|---------------------------------------|--|--|
| Identification of  | From BioMedTracker database           | Using Algorithm 1 in Figure S5        |  |  |
| phase transitions  |                                       |                                       |  |  |
| What constitutes a | Considered only biomarkers in pa-     | Considered to 'involve biomarkers'    |  |  |
| biomarker trial?   | tient selection                       | if a trial includes includes an ob-   |  |  |
|                    |                                       | jective of evaluating or identifying  |  |  |
|                    |                                       | the use of any novel biomarkers as    |  |  |
|                    |                                       | indicators of therapeutic efficacy or |  |  |
|                    |                                       | toxicity, or to use biomarkers in the |  |  |
|                    |                                       | selection of patients.                |  |  |
| Data source        | Merges BioMedTracker with Am-         | Uses trials tagged as 'involve        |  |  |
|                    | plions BiomarkerBase. Only trials     | biomarker' by Informa. Both clin-     |  |  |
|                    | from clinicaltrials.gov were used as  | icaltrials.gov and private informa-   |  |  |
|                    | NCT numbers were used as trial        | tion were used, summing up to         |  |  |
|                    | identifiers. Analysis consists of 512 | 10,650 phase transitions.             |  |  |
|                    | phase transitions.                    |                                       |  |  |

Table S4. Differences between the biomarker study in Thomas and others (2016) and this paper.

Thomas and others (2016) provided a sample of 1,593 trial entries for comparison. Of these, 722 entries are used in their analysis. We merged our algorithm output with this subset of trials to produce tag outcomes for 1,065 of the 1,953 entries. Only 438 data points exist in both analyses. Our algorithm is unable to produce outcomes for some trials for which Thomas and others (2016) did because an insufficient period has passed since the conclusion of the trial. This relates to the t1, t2, and t3 parameters in our algorithm.

Of the 438 overlapping data points, our algorithm arrived at the same conclusion as Thomas and others (2016) for 90.0% of the data, suggesting that our algorithm identifies phase transitions accurately. Using this dataset of 1,065 identified entries, we compared our result against Thomas *and others* (2016) in Table S5. We see that our algorithm tends to identify more failures compared to Thomas *and others* (2016). This may be due to our method of counting a trial that is in limbo for an extended period of time as 'terminated'.

|                          | Pha      | ase 1      | Pha      | ase 2      | Phase 3  |            |
|--------------------------|----------|------------|----------|------------|----------|------------|
|                          | Advanced | Terminated | Advanced | Terminated | Advanced | Terminated |
| Thomas and others (2016) | 57       | 34         | 102      | 100        | 92       | 31         |
| Our algorithm            | 37       | 23         | 172      | 170        | 164      | 102        |

Table S5. Comparison of identified phase transitions.

Given these checks, we conclude that our results differ from Thomas *and others* (2016) mainly due to the use of Algorithm 1 to process more trial data to produce POS estimates.

## A8. PROBABILITY OF SUCCESS OVER TIME

The following tables supplement SECTION 4.4. We tabulate the POS over time for each therapeutic group.

|      | Oncology |         |                      |         |         |                      |         |          |                                 |         |  |  |
|------|----------|---------|----------------------|---------|---------|----------------------|---------|----------|---------------------------------|---------|--|--|
| Year | Phase 1  |         |                      |         | Phase 2 |                      |         | POS1 APP |                                 |         |  |  |
|      | Success  | Failure | $\mathrm{POS}_{1,2}$ | Success | Failure | $\mathrm{POS}_{2,3}$ | Success | Failure  | $\mathrm{POS}_{3,\mathrm{APP}}$ | 1,111 1 |  |  |
| 2005 | 812      | 1297    | 38.5%                | 410     | 771     | 34.7%                | 155     | 176      | 46.8%                           | 6.3%    |  |  |
| 2006 | 946      | 1410    | 40.2%                | 486     | 909     | 34.8%                | 144     | 212      | 40.4%                           | 5.7%    |  |  |
| 2007 | 1014     | 1368    | 42.6%                | 496     | 1022    | 32.7%                | 142     | 241      | 37.1%                           | 5.2%    |  |  |
| 2008 | 1005     | 1419    | 41.5%                | 509     | 1112    | 31.4%                | 142     | 269      | 34.5%                           | 4.5%    |  |  |
| 2009 | 1026     | 1640    | 38.5%                | 490     | 1237    | 28.4%                | 145     | 270      | 34.9%                           | 3.8%    |  |  |
| 2010 | 1083     | 1942    | 35.8%                | 511     | 1369    | 27.2%                | 139     | 291      | 32.3%                           | 3.1%    |  |  |
| 2011 | 1098     | 2344    | 31.9%                | 488     | 1516    | 24.4%                | 120     | 251      | 32.3%                           | 2.5%    |  |  |
| 2012 | 1091     | 2739    | 28.5%                | 481     | 1752    | 21.5%                | 116     | 298      | 28.0%                           | 1.7%    |  |  |
| 2013 | 1067     | 2830    | 27.4%                | 449     | 1843    | 19.6%                | 131     | 248      | 34.6%                           | 1.9%    |  |  |
| 2014 | 1006     | 2727    | 26.9%                | 423     | 1505    | 21.9%                | 139     | 193      | 41.9%                           | 2.5%    |  |  |
| 2015 | 862      | 1733    | 33.2%                | 399     | 843     | 32.1%                | 118     | 33       | 78.1%                           | 8.3%    |  |  |

Table S6. POS for oncology trials between the years 2005 and 2015, computed using a rolling window of 3 years.

| Metabolic/ Endocrinology |         |         |                      |         |         |                      |         |          |                                 |       |  |  |
|--------------------------|---------|---------|----------------------|---------|---------|----------------------|---------|----------|---------------------------------|-------|--|--|
| Year                     | Phase 1 |         |                      |         | Phase 2 |                      |         | POS1 APP |                                 |       |  |  |
|                          | Success | Failure | $\mathrm{POS}_{1,2}$ | Success | Failure | $\mathrm{POS}_{2,3}$ | Success | Failure  | $\mathrm{POS}_{3,\mathrm{APP}}$ |       |  |  |
| 2005                     | 154     | 65      | 70.3%                | 206     | 167     | 55.2%                | 142     | 168      | 45.8%                           | 17.8% |  |  |
| 2006                     | 204     | 85      | 70.6%                | 207     | 208     | 49.9%                | 164     | 168      | 49.4%                           | 17.4% |  |  |
| 2007                     | 231     | 146     | 61.3%                | 180     | 233     | 43.6%                | 179     | 187      | 48.9%                           | 13.1% |  |  |
| 2008                     | 257     | 216     | 54.3%                | 183     | 283     | 39.3%                | 171     | 219      | 43.8%                           | 9.4%  |  |  |
| 2009                     | 241     | 262     | 47.9%                | 171     | 305     | 35.9%                | 159     | 227      | 41.2%                           | 7.1%  |  |  |
| 2010                     | 270     | 324     | 45.5%                | 178     | 365     | 32.8%                | 171     | 208      | 45.1%                           | 6.7%  |  |  |
| 2011                     | 266     | 332     | 44.5%                | 173     | 363     | 32.3%                | 172     | 188      | 47.8%                           | 6.9%  |  |  |
| 2012                     | 275     | 339     | 44.8%                | 173     | 358     | 32.6%                | 179     | 181      | 49.7%                           | 7.3%  |  |  |
| 2013                     | 240     | 346     | 41.0%                | 144     | 298     | 32.6%                | 177     | 136      | 56.5%                           | 7.5%  |  |  |
| 2014                     | 213     | 306     | 41.0%                | 134     | 223     | 37.5%                | 208     | 92       | 69.3%                           | 10.7% |  |  |
| 2015                     | 193     | 201     | 49.0%                | 105     | 115     | 47.7%                | 179     | 13       | 93.2%                           | 21.8% |  |  |

Table S7. POS for metabolic/endocrinology trials between the years 2005 and 2015, computed using a rolling window of 3 years.

| Cardiovascular |         |         |                      |         |         |                      |         |          |                                 |         |  |  |
|----------------|---------|---------|----------------------|---------|---------|----------------------|---------|----------|---------------------------------|---------|--|--|
| Year           | Phase 1 |         |                      |         | Phase 2 |                      |         | POS1 APP |                                 |         |  |  |
|                | Success | Failure | $\mathrm{POS}_{1,2}$ | Success | Failure | $\mathrm{POS}_{2,3}$ | Success | Failure  | $\mathrm{POS}_{3,\mathrm{APP}}$ | 1,111 1 |  |  |
| 2005           | 113     | 87      | 56.5%                | 147     | 129     | 53.3%                | 168     | 93       | 64.4%                           | 19.4%   |  |  |
| 2006           | 143     | 105     | 57.7%                | 151     | 139     | 52.1%                | 167     | 116      | 59.0%                           | 17.7%   |  |  |
| 2007           | 171     | 148     | 53.6%                | 145     | 157     | 48.0%                | 170     | 143      | 54.3%                           | 14.0%   |  |  |
| 2008           | 191     | 173     | 52.5%                | 129     | 180     | 41.7%                | 188     | 146      | 56.3%                           | 12.3%   |  |  |
| 2009           | 199     | 208     | 48.9%                | 124     | 188     | 39.7%                | 178     | 145      | 55.1%                           | 10.7%   |  |  |
| 2010           | 192     | 222     | 46.4%                | 131     | 229     | 36.4%                | 187     | 130      | 59.0%                           | 10.0%   |  |  |
| 2011           | 198     | 251     | 44.1%                | 139     | 244     | 36.3%                | 151     | 139      | 52.1%                           | 8.3%    |  |  |
| 2012           | 178     | 257     | 40.9%                | 129     | 236     | 35.3%                | 166     | 138      | 54.6%                           | 7.9%    |  |  |
| 2013           | 163     | 292     | 35.8%                | 120     | 195     | 38.1%                | 152     | 106      | 58.9%                           | 8.0%    |  |  |
| 2014           | 140     | 266     | 34.5%                | 93      | 125     | 42.7%                | 191     | 65       | 74.6%                           | 11.0%   |  |  |
| 2015           | 122     | 174     | 41.2%                | 88      | 63      | 58.3%                | 189     | 10       | 95.0%                           | 22.8%   |  |  |

Table S8. POS for cardiovascular trials between the years 2005 and 2015, computed using a rolling window of 3 years.

|      | CNS     |         |             |         |         |             |         |          |                                 |         |  |  |  |
|------|---------|---------|-------------|---------|---------|-------------|---------|----------|---------------------------------|---------|--|--|--|
| Year | Phase 1 |         |             |         | Phase 2 |             |         | POS1 APP |                                 |         |  |  |  |
|      | Success | Failure | $POS_{1,2}$ | Success | Failure | $POS_{2,3}$ | Success | Failure  | $\mathrm{POS}_{3,\mathrm{APP}}$ | 1,111 1 |  |  |  |
| 2005 | 191     | 107     | 64.1%       | 245     | 269     | 47.7%       | 170     | 164      | 50.9%                           | 15.5%   |  |  |  |
| 2006 | 235     | 146     | 61.7%       | 269     | 331     | 44.8%       | 194     | 177      | 52.3%                           | 14.5%   |  |  |  |
| 2007 | 252     | 208     | 54.8%       | 254     | 363     | 41.2%       | 222     | 222      | 50.0%                           | 11.3%   |  |  |  |
| 2008 | 282     | 286     | 49.6%       | 233     | 439     | 34.7%       | 218     | 241      | 47.5%                           | 8.2%    |  |  |  |
| 2009 | 344     | 439     | 43.9%       | 211     | 451     | 31.9%       | 228     | 249      | 47.8%                           | 6.7%    |  |  |  |
| 2010 | 400     | 537     | 42.7%       | 215     | 480     | 30.9%       | 225     | 236      | 48.8%                           | 6.4%    |  |  |  |
| 2011 | 385     | 579     | 39.9%       | 206     | 468     | 30.6%       | 217     | 225      | 49.1%                           | 6.0%    |  |  |  |
| 2012 | 345     | 546     | 38.7%       | 186     | 456     | 29.0%       | 219     | 207      | 51.4%                           | 5.8%    |  |  |  |
| 2013 | 307     | 498     | 38.1%       | 177     | 455     | 28.0%       | 225     | 175      | 56.3%                           | 6.0%    |  |  |  |
| 2014 | 293     | 439     | 40.0%       | 184     | 362     | 33.7%       | 207     | 108      | 65.7%                           | 8.9%    |  |  |  |
| 2015 | 238     | 281     | 45.9%       | 146     | 228     | 39.0%       | 178     | 18       | 90.8%                           | 16.3%   |  |  |  |

Table S9. POS for CNS trials between the years 2005 and 2015, computed using a rolling window of 3 years.

|      |         |         |                      | Auto    | oimmune/ | Inflammat            | ion     |         |                                 |        |  |
|------|---------|---------|----------------------|---------|----------|----------------------|---------|---------|---------------------------------|--------|--|
| Year |         | Phase 1 |                      |         | Phase 2  |                      |         | Phase 3 |                                 |        |  |
|      | Success | Failure | $\mathrm{POS}_{1,2}$ | Success | Failure  | $\mathrm{POS}_{2,3}$ | Success | Failure | $\mathrm{POS}_{3,\mathrm{APP}}$ | , AI I |  |
| 2005 | 208     | 169     | 55.2%                | 188     | 350      | 34.9%                | 198     | 104     | 65.6%                           | 12.6%  |  |
| 2006 | 246     | 193     | 56.0%                | 191     | 388      | 33.0%                | 200     | 117     | 63.1%                           | 11.7%  |  |
| 2007 | 267     | 233     | 53.4%                | 177     | 400      | 30.7%                | 206     | 118     | 63.6%                           | 10.4%  |  |
| 2008 | 296     | 274     | 51.9%                | 166     | 444      | 27.2%                | 213     | 126     | 62.8%                           | 8.9%   |  |
| 2009 | 301     | 362     | 45.4%                | 186     | 471      | 28.3%                | 227     | 147     | 60.7%                           | 7.8%   |  |
| 2010 | 310     | 487     | 38.9%                | 183     | 500      | 26.8%                | 227     | 159     | 58.8%                           | 6.1%   |  |
| 2011 | 316     | 544     | 36.7%                | 184     | 490      | 27.3%                | 202     | 150     | 57.4%                           | 5.8%   |  |
| 2012 | 299     | 612     | 32.8%                | 191     | 489      | 28.1%                | 211     | 156     | 57.5%                           | 5.3%   |  |
| 2013 | 292     | 600     | 32.7%                | 186     | 466      | 28.5%                | 201     | 121     | 62.4%                           | 5.8%   |  |
| 2014 | 289     | 580     | 33.3%                | 172     | 387      | 30.8%                | 189     | 76      | 71.3%                           | 7.3%   |  |
| 2015 | 250     | 354     | 41.4%                | 142     | 212      | 40.1%                | 158     | 19      | 89.3%                           | 14.8%  |  |

Table S10. POS for autoimmune/inflammation trials between the years 2005 and 2015, computed using a rolling window of 3 years.

|      |         |         |                      |         | Genitou             | rinary |         |                       |       |           |  |
|------|---------|---------|----------------------|---------|---------------------|--------|---------|-----------------------|-------|-----------|--|
| Year |         | Phase 1 |                      |         | Phase 2             |        |         | Phase 3               |       |           |  |
|      | Success | Failure | $\mathrm{POS}_{1,2}$ | Success | Failure $POS_{2,3}$ |        | Success | Failure $POS_{3,APP}$ |       | 1 UNI,APP |  |
| 2005 | 25      | 26      | 49.0%                | 34      | 35                  | 49.3%  | 32      | 11                    | 74.4% | 18.0%     |  |
| 2006 | 30      | 41      | 42.3%                | 39      | 48                  | 44.8%  | 51      | 18                    | 73.9% | 14.0%     |  |
| 2007 | 46      | 67      | 40.7%                | 35      | 52                  | 40.2%  | 53      | 25                    | 67.9% | 11.1%     |  |
| 2008 | 46      | 89      | 34.1%                | 36      | 68                  | 34.6%  | 59      | 33                    | 64.1% | 7.6%      |  |
| 2009 | 56      | 86      | 39.4%                | 32      | 73                  | 30.5%  | 60      | 26                    | 69.8% | 8.4%      |  |
| 2010 | 45      | 78      | 36.6%                | 31      | 81                  | 27.7%  | 63      | 26                    | 70.8% | 7.2%      |  |
| 2011 | 47      | 77      | 37.9%                | 23      | 67                  | 25.6%  | 57      | 26                    | 68.7% | 6.7%      |  |
| 2012 | 40      | 77      | 34.2%                | 21      | 55                  | 27.6%  | 51      | 30                    | 63.0% | 5.9%      |  |
| 2013 | 37      | 68      | 35.2%                | 25      | 43                  | 36.8%  | 41      | 24                    | 63.1% | 8.2%      |  |
| 2014 | 27      | 68      | 28.4%                | 22      | 44                  | 33.3%  | 35      | 13                    | 72.9% | 6.9%      |  |
| 2015 | 31      | 47      | 39.7%                | 18      | 34                  | 34.6%  | 33      | 3                     | 91.7% | 12.6%     |  |

Table S11. POS for genitourinary trials between the years 2005 and 2015, computed using a rolling window of 3 years.

|      |         |         |                      |         | Infectious | Disease              |         |               |                                 |       |
|------|---------|---------|----------------------|---------|------------|----------------------|---------|---------------|---------------------------------|-------|
| Year | Phase 1 |         |                      | Phase 2 |            |                      |         | $POS_{1,APP}$ |                                 |       |
|      | Success | Failure | $\mathrm{POS}_{1,2}$ | Success | Failure    | $\mathrm{POS}_{2,3}$ | Success | Failure       | $\mathrm{POS}_{3,\mathrm{APP}}$ |       |
| 2005 | 134     | 124     | 51.9%                | 170     | 191        | 47.1%                | 159     | 97            | 62.1%                           | 15.2% |
| 2006 | 170     | 137     | 55.4%                | 170     | 195        | 46.6%                | 201     | 110           | 64.6%                           | 16.7% |
| 2007 | 212     | 166     | 56.1%                | 189     | 215        | 46.8%                | 252     | 88            | 74.1%                           | 19.4% |
| 2008 | 234     | 185     | 55.8%                | 188     | 249        | 43.0%                | 291     | 96            | 75.2%                           | 18.1% |
| 2009 | 253     | 284     | 47.1%                | 194     | 309        | 38.6%                | 347     | 115           | 75.1%                           | 13.6% |
| 2010 | 239     | 355     | 40.2%                | 185     | 352        | 34.5%                | 343     | 109           | 75.9%                           | 10.5% |
| 2011 | 258     | 454     | 36.2%                | 197     | 349        | 36.1%                | 332     | 81            | 80.4%                           | 10.5% |
| 2012 | 287     | 497     | 36.6%                | 187     | 368        | 33.7%                | 299     | 83            | 78.3%                           | 9.7%  |
| 2013 | 314     | 475     | 39.8%                | 154     | 344        | 30.9%                | 283     | 68            | 80.6%                           | 9.9%  |
| 2014 | 326     | 472     | 40.9%                | 140     | 265        | 34.6%                | 276     | 42            | 86.8%                           | 12.3% |
| 2015 | 282     | 312     | 47.5%                | 113     | 153        | 42.5%                | 230     | 7             | 97.0%                           | 19.6% |

Table S12. POS for infectious disease trials between the years 2005 and 2015, computed using a rolling window of 3 years.

|      |         |         |                      |         | Ophthal                            | mology |                                    |                      |                                 |       |  |
|------|---------|---------|----------------------|---------|------------------------------------|--------|------------------------------------|----------------------|---------------------------------|-------|--|
| Year | Phase 1 |         |                      | Phase 2 |                                    |        |                                    | POS <sub>1 APP</sub> |                                 |       |  |
|      | Success | Failure | $\mathrm{POS}_{1,2}$ | Success | Success Failure POS <sub>2,3</sub> |        | Success Failure POS <sub>3</sub> , |                      | $\mathrm{POS}_{3,\mathrm{APP}}$ |       |  |
| 2005 | 7       | 5       | 58.3%                | 21      | 25                                 | 45.7%  | 28                                 | 13                   | 68.3%                           | 18.2% |  |
| 2006 | 13      | 8       | 61.9%                | 28      | 30                                 | 48.3%  | 37                                 | 16                   | 69.8%                           | 20.9% |  |
| 2007 | 20      | 16      | 55.6%                | 31      | 29                                 | 51.7%  | 33                                 | 17                   | 66.0%                           | 18.9% |  |
| 2008 | 26      | 27      | 49.1%                | 35      | 39                                 | 47.3%  | 29                                 | 25                   | 53.7%                           | 12.5% |  |
| 2009 | 31      | 36      | 46.3%                | 36      | 53                                 | 40.4%  | 38                                 | 23                   | 62.3%                           | 11.7% |  |
| 2010 | 32      | 28      | 53.3%                | 42      | 69                                 | 37.8%  | 48                                 | 31                   | 60.8%                           | 12.3% |  |
| 2011 | 29      | 21      | 58.0%                | 45      | 82                                 | 35.4%  | 49                                 | 28                   | 63.6%                           | 13.1% |  |
| 2012 | 36      | 22      | 62.1%                | 46      | 78                                 | 37.1%  | 41                                 | 26                   | 61.2%                           | 14.1% |  |
| 2013 | 40      | 34      | 54.1%                | 43      | 68                                 | 38.7%  | 44                                 | 11                   | 80.0%                           | 16.8% |  |
| 2014 | 38      | 32      | 54.3%                | 41      | 53                                 | 43.6%  | 75                                 | 3                    | 96.2%                           | 22.8% |  |
| 2015 | 26      | 21      | 55.3%                | 33      | 28                                 | 54.1%  | 76                                 | 1                    | 98.7%                           | 29.5% |  |

Table S13. POS for ophthalmology trials between the years 2005 and 2015, computed using a rolling window of 3 years.

|      |         |         |                      | Vacc    | ines (Infec | tious Disea          | use)    |         |                                 |        |  |
|------|---------|---------|----------------------|---------|-------------|----------------------|---------|---------|---------------------------------|--------|--|
| Year |         | Phase 1 |                      |         | Phase 2     |                      |         | Phase 3 |                                 |        |  |
|      | Success | Failure | $\mathrm{POS}_{1,2}$ | Success | Failure     | $\mathrm{POS}_{2,3}$ | Success | Failure | $\mathrm{POS}_{3,\mathrm{APP}}$ | , AI I |  |
| 2005 | 23      | 58      | 28.4%                | 71      | 89          | 44.4%                | 80      | 30      | 72.7%                           | 9.2%   |  |
| 2006 | 43      | 63      | 40.6%                | 85      | 88          | 49.1%                | 116     | 38      | 75.3%                           | 15.0%  |  |
| 2007 | 69      | 73      | 48.6%                | 116     | 107         | 52.0%                | 172     | 31      | 84.7%                           | 21.4%  |  |
| 2008 | 90      | 91      | 49.7%                | 111     | 134         | 45.3%                | 217     | 34      | 86.5%                           | 19.5%  |  |
| 2009 | 106     | 114     | 48.2%                | 106     | 180         | 37.1%                | 239     | 31      | 88.5%                           | 15.8%  |  |
| 2010 | 93      | 116     | 44.5%                | 103     | 216         | 32.3%                | 248     | 32      | 88.6%                           | 12.7%  |  |
| 2011 | 95      | 120     | 44.2%                | 111     | 210         | 34.6%                | 236     | 30      | 88.7%                           | 13.6%  |  |
| 2012 | 100     | 145     | 40.8%                | 99      | 205         | 32.6%                | 239     | 31      | 88.5%                           | 11.8%  |  |
| 2013 | 97      | 172     | 36.1%                | 72      | 190         | 27.5%                | 203     | 29      | 87.5%                           | 8.7%   |  |
| 2014 | 98      | 171     | 36.4%                | 63      | 148         | 29.9%                | 187     | 17      | 91.7%                           | 10.0%  |  |
| 2015 | 78      | 110     | 41.5%                | 44      | 92          | 32.4%                | 157     | 2       | 98.7%                           | 13.3%  |  |

Table S14. POS for Vaccines (Infectious Disease) trials between the years 2005 and 2015, computed using a rolling window of 3 years.

#### Supplementary Material

#### A9. TRIALS PER DEVELOPMENT PATH

In this section, we record the average number of trials per development path. From Table S15, we see that the average number of Phase 1, Phase 2, Phase 3, and Phase 4 trials for a drug development are 1.7, 2.0, 2.8, and 3.2, respectively. The high number of Phase 4 trials per development path is surprising, as it indicates that many approved drugs require substantial long-term studies to identify and evaluate long-term side effects.

|                               | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
|-------------------------------|---------|---------|---------|---------|
| Oncology                      | 1.6     | 2.4     | 2.3     | 2.2     |
| Metabolic/ Endocrinology      | 2.2     | 1.9     | 3.1     | 3.2     |
| Cardiovascular                | 2.0     | 1.9     | 2.9     | 3.4     |
| CNS                           | 2.0     | 1.7     | 3.2     | 3.4     |
| Autoimmune/ Inflammation      | 1.6     | 1.6     | 3.2     | 3.4     |
| Genitourinary                 | 1.7     | 1.7     | 2.4     | 2.6     |
| Infectious Disease            | 2.0     | 1.9     | 2.9     | 3.1     |
| Ophthalmology                 | 1.2     | 1.8     | 2.2     | 3.9     |
| Vaccines (Infectious Disease) | 1.3     | 2.0     | 3.0     | 2.8     |
| Overall                       | 1.7     | 2.0     | 2.8     | 3.2     |

Table S15. Average number of trials per development path, computed for all indications over the period of January 1, 2000, to October 31, 2015.

## A10. Completion Rates

An alternative measure of performance for clinical trials is the completion rate. It answers the question, "How likely is a trial to complete?" The completion rate of Phase *i* trials ( $CR_i$ ) is computed by dividing the number of trials in Phase *i* that were tagged as 'completed' by the number of trials that have been initiated in Phase *i*. This metric is useful in real option valuation, where uncertain possible outcomes with various endpoints are implicitly modeled in order to provide a more robust and comprehensive cost-benefit analysis. Our data shows that clinical trial completion rates are high across all phases, averaging at 85.8% (Table S16). Phase 2 trials have the lowest tendency to complete, with only 81.1% of all trials being completed. On the other hand, 91.3% of all Phase 1 trials are completed. While Phase 3 trials are often larger-scale replications

of Phase 2 trials, and thus potentially riskier and costlier, they have a higher completion rate than Phase 2 trials. Possible explanations include selection bias and commitment, as only the most promising trials in Phase 2 are selected for Phase 3 trials and given sufficient resources to complete the trials since they are paramount in getting marketing approval.

Differences emerge after breaking down the completion rates of clinical trials by therapeutic group. With the exception of cancer-treating drugs, most drug development projects have a trial completion rate between 84.4% and 93.1%. Oncology trials performed much more poorly than average, with only 73.9% of all trials concluding successfully. A closer look shows that their completion rates were lower across all phases, pointing to a possible bottleneck in the development of oncology drugs.

The completion rates for non-industry sponsored trials are provided in SECTION A13.

|                               | Pł        | Phase 1 |        |           | Phase 2 |        |           | nase 3 |                 | Pł        | ase 4  |        |
|-------------------------------|-----------|---------|--------|-----------|---------|--------|-----------|--------|-----------------|-----------|--------|--------|
|                               | Completed | Failed  | $CR_1$ | Completed | Failed  | $CR_2$ | Completed | Failed | CR <sub>3</sub> | Completed | Failed | $CR_4$ |
| Oncology                      | 3910      | 885     | 81.5%  | 6278      | 2501    | 71.5%  | 1439      | 706    | 67.1%           | 403       | 149    | 73.0%  |
| Metabolic/ Endocrinology      | 2602      | 145     | 94.7%  | 1939      | 292     | 86.9%  | 2267      | 370    | 86.0%           | 1564      | 227    | 87.3%  |
| Cardiovascular                | 1884      | 110     | 94.5%  | 1349      | 249     | 84.4%  | 1679      | 290    | 85.3%           | 1373      | 199    | 87.3%  |
| CNS                           | 3233      | 185     | 94.6%  | 2862      | 432     | 86.9%  | 3091      | 453    | 87.2%           | 2100      | 245    | 89.6%  |
| Autoimmune/ Inflammation      | 2449      | 132     | 94.9%  | 2986      | 432     | 87.4%  | 2681      | 343    | 88.7%           | 1984      | 234    | 89.4%  |
| Genitourinary                 | 507       | 16      | 96.9%  | 419       | 56      | 88.2%  | 450       | 53     | 89.5%           | 324       | 43     | 88.3%  |
| Infectious Disease            | 2424      | 140     | 94.5%  | 1715      | 268     | 86.5%  | 1698      | 243    | 87.5%           | 1111      | 220    | 83.5%  |
| Ophthalmology                 | 161       | 18      | 89.9%  | 424       | 72      | 85.5%  | 307       | 51     | 85.8%           | 336       | 45     | 88.2%  |
| Vaccines (Infectious Disease) | 414       | 37      | 91.8%  | 752       | 69      | 91.6%  | 850       | 63     | 93.1%           | 337       | 34     | 90.8%  |
| Total                         | 17584     | 1668    | 91.3%  | 18724     | 4371    | 81.1%  | 14462     | 2572   | 84.9%           | 9532      | 1396   | 87.2%  |

Table S16. Completion rates of industry-sponsored clinical trials (i.e., the number of trials that were tagged as completed divided by the number of trials that were initiated) by phase and therapeutic group, using the entire dataset from January 1, 2000, to October 31, 2015.

## A11. DURATION

One principal component of the cost of conducting a trial is its expected duration. All else being equal, one would expect that a longer trial would require more hours of labor and supplies, resulting in a higher cost. In addition, from a financial perspective, a longer trial is exposed to more uncertainties. We quantify the distribution of the duration of trials in order to inform companies and investors of the potential risk in a project. We assume that there is no underlying process that induces gaps in the data. We drop trial data without date-stamps for the start or the end of the trial, as we cannot make a statement on the time spent in development for these trials. After data processing, 99,363 trials remain for our computations. Our data has a resolution of 1 calendar month.

The distribution of duration varies widely across different therapeutic groups and phases (Table S17). A typical trial takes a median time of 1.61, 2.94, and 3.84 years to complete Phase 1, Phase 2, and Phase 3, respectively. Simply by summing up the median time in Phase 1, 2, and 3, we approximate that the typical drug spends an average of 8.14 years in clinical trials. This number excludes the preparation time and other factors which may lengthen the overall clinical trial cycle time. While the median duration for other therapeutic groups lies between 5.94 to 7.15 years, oncology trials take 13.11 years. This causes higher risks in oncology projects, and may explain their low approval rate. The empirical distributions and the gamma-kernelled non-parametric density estimates (see Malec and Schienle (2014) for computation details) are plotted in the following section.

Taking cues from Abrantes-Metz and others (2005), we also compute the duration of trials conditioned on their eventual status ('advanced' or 'terminated') using a 5-year rolling window (Figure S6). With our larger dataset, we found that Phase 2 trials that were terminated tend to conclude 8.1 months earlier than Phase 2 trials that advanced (Table S18). Terminated Phase 3 trials, however, tend to conclude about 3.2 months after Phase 3 trials that successfully advanced.

Wong, Siah & Lo

|                               | Phase 1 | Phase 2 | Phase 3 | Phase 4 |
|-------------------------------|---------|---------|---------|---------|
| Oncology                      | 1216    | 1490    | 2080    | 1394    |
| Metabolic/ Endocrinology      | 325     | 946     | 976     | 1036    |
| Cardiovascular                | 379     | 1025    | 1208    | 1174    |
| CNS                           | 334     | 932     | 1034    | 1068    |
| Autoimmune/ Inflammation      | 335     | 980     | 979     | 1207    |
| Genitourinary                 | 378     | 787     | 1005    | 913     |
| Infectious Disease            | 562     | 951     | 1067    | 1180    |
| Ophthalmology                 | 546     | 823     | 1028    | 935     |
| Vaccines (Infectious Disease) | 714     | 827     | 798     | 900     |

Table S17. Median duration of trials in days. Only data entries with date stamps from January 1, 2000, to October 31, 2015 are used.

The difference within the Phase 1 group is insignificant; while we see a difference of 53 days, this is within our margin of error, given that the resolution for a time period is 2 calendar months, or 60 days. By composing a time series using 5-year rolling windows (see Figure S6), we see that the differences (or lack thereof) remain constant over time.

|         | Terminated | Advanced | Difference ('Advanced' - 'Terminated') |
|---------|------------|----------|----------------------------------------|
| Phase 1 | 487        | 540      | 53.0                                   |
| Phase 2 | 823        | 1065     | 242.0                                  |
| Phase 3 | 1035       | 941      | -94.0                                  |

Table S18. Median duration of trials conditioned on eventual status, in days.



Fig. S6. Plot of median duration of trials across time.

# A12. DISTRIBUTION OF DURATION

In this section, we document the distribution of duration conditioned on the indication group and phase in order to inform interested readers.



Fig. S7. Distribution of duration for oncology trials conditioned on the phase.



Fig. S8. Distribution of duration for metabolic/endocrinology trials conditioned on the phase.



Fig. S9. Distribution of duration for cardiovascular trials conditioned on the phase.



Fig. S10. Distribution of duration for CNS trials conditioned on the phase.



Fig. S11. Distribution of duration for autoimmune/inflammation trials conditioned on the phase.



Fig. S12. Distribution of duration for genitourinary trials conditioned on the phase.



Fig. S13. Distribution of duration for infectious disease trials conditioned on the phase.



Fig. S14. Distribution of duration for ophthalmology trials conditioned on the phase.



Fig. S15. Distribution of duration for vaccines (infectious disease) trials conditioned on the phase.

#### Supplementary Material

## A13. Non-Industry Trials

The clinical research sector outside the pharmaceutical industry is an integral part of drug research and development. Not only is this sector actively involved with industry in conducting trials, but academics and hospitals also conduct fundamental research that furthers understanding of basic pharmacokinetics, among other phenomena measured in clinical trials. We thus seek to quantify the performance of this sector.

As our database does not record non-industry approvals, we supplement our dataset with data from *Drugs@FDA*, the U.S. Food and Drug Administration's (FDA) approved drugs database. In all, 53 drug approvals for 17 unique compounds were awarded to non-industry organizations (see Table S20). Of these, only three compounds were non-generic: two were awarded to the U.S. Army and the remaining compound is a PET imaging diagnostic agent. The remaining drugs are generic compounds whose patents have expired and have been awarded to hospitals and non-profits.

Given the altruistic aims of organizations outside the industry, and the fact that virtually no novel drugs have been granted by the FDA to these organizations, we look at only the completion rates for non-industry trials. We find that, although Phase 1 trials conducted outside the industry have lower completion rates than those within the industry, non-industry organizations outperform the latter in completing Phase 2, Phase 3, and Phase 4 trials (compare Tables S16 and S19). This suggests that each group has a relative advantage in completing different phases of clinical trials, and that there may be exploitable synergies to be gained when working together. Computing the POS of drug development projects conditioned on the status and number of non-industry partners (Table S21) shows that drug development projects involving non-industry partners have a 5% higher chance of getting marketing approval for their drugs. These results extend the findings by Danzon *and others* (2005).

|                               | Pł        | Phase 1 |        |           | Phase 2 |        |           | nase 3 |                 | Pł        | nase 4 |        |
|-------------------------------|-----------|---------|--------|-----------|---------|--------|-----------|--------|-----------------|-----------|--------|--------|
|                               | Completed | Failed  | $CR_1$ | Completed | Failed  | $CR_2$ | Completed | Failed | CR <sub>3</sub> | Completed | Failed | $CR_4$ |
| Oncology                      | 2,327     | 511     | 82.0%  | 12,199    | 2474    | 83.1%  | 1,379     | 527    | 72.4%           | 592       | 83     | 87.7%  |
| Metabolic/ Endocrinology      | 323       | 26      | 92.6%  | 2,351     | 157     | 93.7%  | 1,073     | 134    | 88.9%           | 5,446     | 280    | 95.1%  |
| Cardiovascular                | 461       | 32      | 93.5%  | 4,676     | 178     | 96.3%  | 1,340     | 144    | 90.3%           | 7,106     | 318    | 95.7%  |
| CNS                           | 564       | 60      | 90.4%  | 5,677     | 404     | 93.4%  | 2,068     | 257    | 88.9%           | 7,507     | 537    | 93.3%  |
| Autoimmune/ Inflammation      | 431       | 37      | 92.1%  | 4,046     | 236     | 94.5%  | 1,589     | 105    | 93.8%           | 6,156     | 210    | 96.7%  |
| Genitourinary                 | 84        | 9       | 90.3%  | 918       | 45      | 95.3%  | 334       | 47     | 87.7%           | 1,741     | 126    | 93.3%  |
| Infectious Disease            | 702       | 76      | 90.2%  | 2,264     | 220     | 91.1%  | 1,030     | 146    | 87.6%           | 4,887     | 374    | 92.9%  |
| Ophthalmology                 | 60        | 7       | 89.6%  | 1,238     | 28      | 97.8%  | 361       | 22     | 94.3%           | 1,642     | 50     | 97.0%  |
| Vaccines (Infectious Disease) | 335       | 60      | 84.8%  | 450       | 50      | 90.0%  | 192       | 15     | 92.8%           | 807       | 73     | 91.7%  |
| Total                         | 5,287     | 818     | 86.6%  | 33,819    | 3792    | 89.9%  | 9,366     | 1397   | 87.0%           | 35,884    | 2,051  | 94.6%  |

Table S19. Completion rates of non-industry-sponsored trials based on data from January 1, 2000, to October 31, 2015.

Supplementary Material

| Generic?  | SponsorName                             | ApplNo | Drugname                            |
|-----------|-----------------------------------------|--------|-------------------------------------|
| No        | BIOMEDCL RES FDN                        | 204352 | AMMONIA N 13                        |
| No        | BIOMEDCL RES FDN                        | 203710 | FLUDEOXYGLUCOSE F18                 |
| Yes       | BIOMEDCL RES FDN                        | 204351 | SODIUM FLUORIDE F-18                |
| No        | BRIGHAM WOMENS                          | 203816 | FLUDEOXYGLUCOSE F18                 |
| No        | BRIGHAM WOMENS HOSP                     | 203783 | AMMONIA N 13                        |
| No        | CHILDRENS HOSP MI                       | 204385 | FLUDEOXYGLUCOSE F18                 |
| No        | FEINSTEIN                               | 22119  | AMMONIA N 13                        |
| No        | FEINSTEIN                               | 21870  | FLUDEOXYGLUCOSE F18                 |
| No        | FEINSTEIN                               | 21870  | FLUDEOXYGLUCOSE F18                 |
| No        | HEALTHPOINT                             | 84698  | NUTRACORT                           |
| No        | HOUSTON CYCLOTRON                       | 203543 | AMMONIA N 13                        |
| No        | HOUSTON CYCLOTRON                       | 203665 | FLUDEOXYGLUCOSE F18                 |
| Yes       | HOUSTON CYCLOTRON                       | 203544 | SODIUM FLUORIDE F-18                |
| No        | JOHNS HOPKINS UNIV                      | 204514 | AMMONIA N 13                        |
| No        | KETTERING MEDCTR                        | 204759 | FLUDEOXYGLUCOSE F18                 |
| No        | KREITCHMAN PET CTR                      | 203938 | AMMONIA N 13                        |
| No        | KREITCHMAN PET CTR                      | 203942 | FLUDEOXYGLUCOSE F18                 |
| Ves       | KREITCHMAN PET CTR                      | 203936 | SODIUM FLUORIDE F-18                |
| No        | MA GENERAL HOSP                         | 203230 | AMMONIA N 13                        |
| No        | MA GENERAL HOSP                         | 20/025 | FLUDEOXYGLUCOSE E18                 |
| No        | METHODIST HOSP RES                      | 204333 | FLUDEOXYGLUCOSE F18                 |
| No        | NIH NCI DCTD                            | 203704 | SODIUM ELUORIDE E 18                |
| No        | POPULATION COUNCIL                      | 20544  |                                     |
| No        | POPULATION COUNCIL                      | 10807  | NOPDI ANT                           |
| No        | OUEEN HAMAMATSU DET                     | 202771 | ELUDEOVVCLUCOSE E18                 |
| No        | THE FEINISTEIN INST                     | 203771 | SODIUM EL LIODIDE E 18              |
| No        | THE FEINSTEIN INST<br>TRUSTEES LINIX DA | 204526 | ELUDEOXYCLUCOSE E18                 |
| No        | IKUSIEES UNIV PA                        | 203601 | AMMONIA N 12                        |
| No        | UCLA BIOMEDICAL                         | 203012 | AMMONIA N 15<br>ELUDEOXVCLUCOSE E18 |
| No        | UCLA BIOMEDICAL                         | 203611 | FLUDEOX I GLUCOSE F18               |
| No        | UNC PET IMAGING                         | 203990 | SODIUM EL LODIDE E 18               |
| Ies<br>N- | UNIV AZ CANCED CTD                      | 204402 | SODIUM FLUORIDE F-18                |
| No        | UNIV AZ CANCER CIR                      | 19940  | AUTINEA<br>ELUDEOXVCLUCOSE E18      |
| INO<br>N- | UNIV MICHIGAN                           | 204551 | FLUDEOX I GLUCOSE F18               |
| INO<br>N- | UNIV NORTH DAKOTA                       | 203994 | FLUDEUX I GLUCUSE F18               |
| INO<br>N- | UNIV TX MD ANDERSON                     | 203933 | AMMONIA N 15<br>CHOLINE C 11        |
| No        | UNIV IX MD ANDERSON                     | 205690 | CHOLINE C-11                        |
| No        | UNIV IX MD ANDERSON                     | 203246 | FLUDEUX Y GLUCUSE F18               |
| Yes       | UNIV IX MD ANDERSON                     | 203247 | SODIUM FLUORIDE F-18                |
| No        | UNIV UTAH CYCLOTRON                     | 204498 | FLUDEOX Y GLUCOSE F18               |
| Yes       |                                         | 204497 | SODIUM FLUORIDE F-18                |
| No        |                                         | 21175  | AINAA                               |
| Yes       |                                         | 20056  | AIROPINE SULFAIE                    |
| No        | US ARMY                                 | 20124  | DIAZEPAM                            |
| Yes       | US ARMY                                 | 20414  | PYRIDOSTIGMINE BROMIDE              |
| No        | US ARMY                                 | 21084  | SKIN EXPOSURE REDUCTION PASTE       |
|           |                                         |        | AGAINST CHEMICAL WARFARE AGENTS     |
| No        | US ARMY                                 | 20166  | SODIUM THIOSULFATE                  |
| No        | US ARMY WALTER REED                     | 19578  | MEFLOQUINE HYDROCHLORIDE            |
| No        | UT SW MEDCTR                            | 19647  | POTASSIUM CITRATE                   |
| No        | WA UNIV SCH MED                         | 204506 | AMMONIA N 13                        |
| No        | WEILL MEDCL COLL                        | 21768  | FLUDEOXYGLUCOSE F18                 |
| No        | WI MEDCL CYCLOTRON                      | 204356 | AMMONIA N 13                        |
| No        | WI MEDCL CYCLOTRON                      | 203709 | FLUDEOXYGLUCOSE F18                 |
| No        | WUSM CYCLOTRON                          | 203935 | FLUDEOXYGLUCOSE F18                 |
| No        | BIOMEDCL RES FDN                        | 203837 | FLUDEOXYGLUCOSE F18                 |
| No        | UNIV TX MD ANDERSON                     | 203246 | FLUDEOXYGLUCOSE F18                 |
| No        | UT SW MEDCTR                            | 19647  | POTASSIUM CITRATE                   |

Table S20. Table of drug approvals awarded to non-industry organizations, extracted from Drugs@FDA.

|                                   | Overall  |                      |       |
|-----------------------------------|----------|----------------------|-------|
| Number of non-industry partner(s) | Advanced | Failed or Terminated | POS   |
| 0                                 | 9631     | 10250                | 48.4% |
| 1                                 | 11338    | 8328                 | 57.7% |
| 2                                 | 3645     | 2290                 | 61.4% |
| 3                                 | 986      | 398                  | 71.2% |
| 4                                 | 320      | 106                  | 75.1% |
| 5                                 | 137      | 35                   | 79.7% |
| 6                                 | 73       | 7                    | 91.3% |
| >6                                | 65       | 17                   | 79.3% |
| Joint (>0 partners)               | 16564    | 11181                | 59.7% |

A14. Success rates of trials with non-industry partners

Table S21. Overall success rates of trials with non-industry partners, based on data from January 1, 2000, to October 31, 2015.

| Phase 1                           |          |                      |        |  |  |  |  |
|-----------------------------------|----------|----------------------|--------|--|--|--|--|
| Number of non-industry partner(s) | Advanced | Failed or Terminated | POS    |  |  |  |  |
| 0                                 | 4235     | 4207                 | 50.2%  |  |  |  |  |
| 1                                 | 2350     | 1444                 | 61.9%  |  |  |  |  |
| 2                                 | 918      | 592                  | 60.8%  |  |  |  |  |
| 3                                 | 173      | 100                  | 63.4%  |  |  |  |  |
| 4                                 | 40       | 15                   | 72.7%  |  |  |  |  |
| 5                                 | 9        | 4                    | 69.2%  |  |  |  |  |
| 6                                 | 8        | 2                    | 80.0%  |  |  |  |  |
| >6                                | 1        | 0                    | 100.0% |  |  |  |  |
| Joint (>0 partners)               | 3499     | 2157                 | 61.9%  |  |  |  |  |

Table S22. Phase 1 success rates of trials with non-industry partners, based on data from January 1, 2000, to October 31, 2015.

| Phase 2                           |          |                      |       |  |  |  |  |
|-----------------------------------|----------|----------------------|-------|--|--|--|--|
| Number of non-industry partner(s) | Advanced | Failed or Terminated | POS   |  |  |  |  |
| 0                                 | 3063     | 4779                 | 39.1% |  |  |  |  |
| 1                                 | 5314     | 5953                 | 47.2% |  |  |  |  |
| 2                                 | 1667     | 1418                 | 54.0% |  |  |  |  |
| 3                                 | 459      | 241                  | 65.6% |  |  |  |  |
| 4                                 | 157      | 64                   | 71.0% |  |  |  |  |
| 5                                 | 55       | 22                   | 71.4% |  |  |  |  |
| 6                                 | 22       | 3                    | 88.0% |  |  |  |  |
| >6                                | 19       | 11                   | 63.3% |  |  |  |  |
| Joint (>0 partners)               | 7693     | 7712                 | 49.9% |  |  |  |  |

Table S23. Phase 2 success rates of trials with non-industry partners, based on data from January 1, 2000, to October 31, 2015.

| Phase 3                           |          |                      |       |  |  |  |  |
|-----------------------------------|----------|----------------------|-------|--|--|--|--|
| Number of non-industry partner(s) | Advanced | Failed or Terminated | POS   |  |  |  |  |
| 0                                 | 2333     | 1264                 | 64.9% |  |  |  |  |
| 1                                 | 3674     | 931                  | 79.8% |  |  |  |  |
| 2                                 | 1060     | 280                  | 79.1% |  |  |  |  |
| 3                                 | 354      | 57                   | 86.1% |  |  |  |  |
| 4                                 | 123      | 27                   | 82.0% |  |  |  |  |
| 5                                 | 73       | 9                    | 89.0% |  |  |  |  |
| 6                                 | 43       | 2                    | 95.6% |  |  |  |  |
| >6                                | 45       | 6                    | 88.2% |  |  |  |  |
| Joint (>0 partners)               | 5372     | 1312                 | 80.4% |  |  |  |  |

Table S24. Phase 3 success rates of trials with non-industry partners, based on data from January 1, 2000, to October 31, 2015.

# A15. Robustness Checks

These tables supplement SECTION 5.

| Comparison of $POS_{1,APP}$ on various subsets of the data |              |               |                             |  |  |  |
|------------------------------------------------------------|--------------|---------------|-----------------------------|--|--|--|
|                                                            | All data (%) | 2006-2015 (%) | ClinicalTrials.gov only (%) |  |  |  |
| Oncology                                                   | 3.4          | 2.9           | 2.6                         |  |  |  |
| Metabolic/ Endocrinology                                   | 19.6         | 17.5          | 19.2                        |  |  |  |
| Cardiovascular                                             | 25.5         | 23.8          | 26.6                        |  |  |  |
| CNS                                                        | 15.0         | 13.6          | 15.1                        |  |  |  |
| Autoimmune/ Inflammation                                   | 15.1         | 13.9          | 14.6                        |  |  |  |
| Genitourinary                                              | 21.6         | 21.0          | 24.4                        |  |  |  |
| Infectious Disease                                         | 25.2         | 25.6          | 27.2                        |  |  |  |
| Ophthalmology                                              | 32.6         | 31.3          | 34.8                        |  |  |  |
| Vaccines (Infectious Disease)                              | 33.4         | 34.8          | 35.5                        |  |  |  |
| Overall                                                    | 13.8         | 13.2          | 13.4                        |  |  |  |

Table S25. Robustness checks: comparison of various subsets of the data against the entire dataset.

[Version: Aug 22 2017]

| Trials occurring between 2006-2015 |                    |                       |                    |                         |                                    |                     |                   |                          |  |
|------------------------------------|--------------------|-----------------------|--------------------|-------------------------|------------------------------------|---------------------|-------------------|--------------------------|--|
| Therapeutic Group                  | Phase 1 to Phase 2 |                       | Phase 2 to Phase 3 |                         |                                    | Phase 3 to Approval |                   | Overall                  |  |
|                                    | Total Paths        | $\text{POS}_{1,2},\%$ | Total Paths        | $\mathrm{POS}_{2,3},\%$ | $\mathrm{POS}_{2,\mathrm{APP}},\%$ | Total Paths         | $POS_{3,APP}, \%$ | POS <sub>1,APP</sub> , % |  |
| Oncology                           | 15,192             | 59.8                  | 5,616              | 23.1                    | 33.2                               | 6,355               | 33.1              | 2.9                      |  |
| Metabolic/ Endocrinology           | 3,173              | 74.7                  | 1,989              | 58.4                    | 58.9                               | 2,719               | 50.6              | 17.5                     |  |
| Cardiovascular                     | 2,400              | 72.8                  | 1,543              | 72.1                    | 66.6                               | 3,380               | 60.3              | 23.8                     |  |
| CNS                                | 4,345              | 71.9                  | 2,552              | 47.5                    | 53.1                               | 2,558               | 49.3              | 13.6                     |  |
| Autoimmune/ Inflammation           | 4,381              | 69.0                  | 2,378              | 42.3                    | 47.8                               | 1,918               | 61.3              | 13.9                     |  |
| Genitourinary                      | 686                | 67.7                  | 421                | 55.2                    | 59.1                               | 417                 | 64.6              | 21.0                     |  |
| Infectious Disease                 | 3,553              | 69.4                  | 1,996              | 46.0                    | 60.4                               | 2,251               | 77.3              | 25.6                     |  |
| Ophthalmology                      | 630                | 86.0                  | 416                | 61.5                    | 61.5                               | 727                 | 73.8              | 31.3                     |  |
| Vaccines (Infectious Disease)      | 1,700              | 76.6                  | 1,103              | 42.4                    | 60.0                               | 1,069               | 87.5              | 34.8                     |  |
| Overall                            | 36,060             | 66.9                  | 18,014             | 38.0                    | 49.6                               | 21,394              | 58.8              | 13.2                     |  |

| Trials originating from clinicaltrials.gov only |  |
|-------------------------------------------------|--|
|                                                 |  |

|                               | Phase 1 t   | to Phase 2              | Phase 2 to Phase 3 |                 |                                    | Phase 3 to Approval |                   | Overall           |
|-------------------------------|-------------|-------------------------|--------------------|-----------------|------------------------------------|---------------------|-------------------|-------------------|
| Therapeutic Group             | Total Paths | $\mathrm{POS}_{1,2},\%$ | Total Paths        | $POS_{2,3}, \%$ | $\mathrm{POS}_{2,\mathrm{APP}},\%$ | Total Paths         | $POS_{3,APP}, \%$ | $POS_{1,APP}, \%$ |
| Oncology                      | 13,437      | 61.2                    | 5,128              | 32.3            | 4.9                                | 888                 | 28.3              | 2.6               |
| Metabolic/ Endocrinology      | 2,417       | 81.3                    | 1,651              | 61.1            | 21.4                               | 745                 | 47.4              | 19.2              |
| Cardiovascular                | 1,831       | 81.0                    | 1,310              | 69.0            | 29.1                               | 679                 | 56.1              | 26.6              |
| CNS                           | 3,076       | 79.5                    | 2,012              | 54.0            | 17.4                               | 763                 | 45.9              | 15.1              |
| Autoimmune/ Inflammation      | 3,114       | 74.5                    | 1,781              | 50.2            | 18.6                               | 597                 | 55.6              | 14.6              |
| Genitourinary                 | 477         | 74.4                    | 320                | 60.0            | 30.0                               | 144                 | 66.7              | 24.4              |
| Infectious Disease            | 2,805       | 72.8                    | 1,651              | 61.8            | 36.0                               | 790                 | 75.2              | 27.2              |
| Ophthalmology                 | 514         | 90.1                    | 358                | 62.0            | 34.1                               | 164                 | 74.4              | 34.8              |
| Vaccines (Infectious Disease) | 1,371       | 77.8                    | 887                | 60.2            | 44.4                               | 453                 | 87.0              | 35.5              |
| Overall                       | 29,042      | 70.1                    | 15,098             | 49.8            | 19.0                               | 5,225               | 55.0              | 13.4              |

Table S26. The probability of success by therapeutic group using truncated datasets. The top half shows the results using only trials between January 1, 2006, and October 31, 2015. The bottom half shows the results using only trials tagged as originating from *clinicaltrials.gov*.