21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found

      Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration

      edited_book
      ,
      Elsevier

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references298

          • Record: found
          • Abstract: found
          • Article: not found

          Persistence of soil organic matter as an ecosystem property.

          Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?

              The decomposition and transformation of above- and below-ground plant detritus (litter) is the main process by which soil organic matter (SOM) is formed. Yet, research on litter decay and SOM formation has been largely uncoupled, failing to provide an effective nexus between these two fundamental processes for carbon (C) and nitrogen (N) cycling and storage. We present the current understanding of the importance of microbial substrate use efficiency and C and N allocation in controlling the proportion of plant-derived C and N that is incorporated into SOM, and of soil matrix interactions in controlling SOM stabilization. We synthesize this understanding into the Microbial Efficiency-Matrix Stabilization (MEMS) framework. This framework leads to the hypothesis that labile plant constituents are the dominant source of microbial products, relative to input rates, because they are utilized more efficiently by microbes. These microbial products of decomposition would thus become the main precursors of stable SOM by promoting aggregation and through strong chemical bonding to the mineral soil matrix. © 2012 Blackwell Publishing Ltd.
                Bookmark

                Author and book information

                Book Chapter
                2022
                : 1-66
                10.1016/bs.agron.2021.11.002
                01a8e695-83d1-4403-b414-2734d05831ff
                History

                Comments

                Comment on this book