The regular sequence encountered in healing guinea pig skin wounds has been examined by methods of light and electron microscopy. Observations on cell populations, their fine structure, and fibril formation in the connective tissue have been made. Linear incisions in the skin of normal female guinea pigs weighing 300 to 350 grams were allowed to heal. The wounds were then excised, fixed with buffered 2 per cent osmium tetroxide, and postfixed in neutral buffered formalin, at 16 and 24 hours and at 3, 5, 9, and 14 days after wounding. They were then embedded in epoxy resin. In the inflammatory phase the exudate observed in the early wounds consists largely of polymorphonuclear neutrophilic leukocytes, macrophages, fibrin, and free extracellular organelles from the disrupted inflammatory cells. These organelles later appear in vacuoles in the cytoplasm of the macrophages. Fibroblasts first appear at 24 hours, and show extensive development and dilatation of the endoplasmic reticulum, which sometimes contains moderately dense flocculent material. In addition, these fibroblasts have enlarged mitochondria and condensations of filamentous material within the cytoplasm near the cell surface. Occasional myelin figures and moderately dense, 0.5 to 1.0 micron bodies are found within the cytoplasm of the early fibroblasts. Collagen fibrils are first seen at 3 days extracellularly near the cell surfaces. They appear at the later times in two populations of sizes. With increasing wound age the fibroblasts retain their morphology and the wounds decrease in cellularity concomitantly with the formation of increasing amounts of collagen. Several proposed mechanisms of collagen fibril formation are discussed in relation to the observed phenomena. The problem of correlating fibril diameter with the appearance of the periodic structure of collagen in relation to the minimal size fibril which would be anticipated to display this appearance is discussed.