Chlamydiae replicate intracellularly in a vacuole called an inclusion. Chlamydial-infected host cells are protected from mitochondrion-dependent apoptosis, partly due to degradation of BH3-only proteins. The host-cell adapter protein 14-3-3β can interact with host-cell apoptotic signaling pathways in a phosphorylation-dependent manner. In Chlamydia trachomatis-infected cells, 14-3-3β co-localizes to the inclusion via direct interaction with a C. trachomatis-encoded inclusion membrane protein. We therefore explored the possibility that the phosphatidylinositol-3 kinase (PI3K) pathway may contribute to resistance of infected cells to apoptosis. We found that inhibition of PI3K renders C. trachomatis-infected cells sensitive to staurosporine-induced apoptosis, which is accompanied by mitochondrial cytochrome c release. 14-3-3β does not associate with the Chlamydia pneumoniae inclusion, and inhibition of PI3K does not affect protection against apoptosis of C. pneumoniae-infected cells. In C. trachomatis-infected cells, the PI3K pathway activates AKT/protein kinase B, which leads to maintenance of the pro-apoptotic protein BAD in a phosphorylated state. Phosphorylated BAD is sequestered via 14-3-3β to the inclusion, but it is released when PI3K is inhibited. Depletion of AKT through short-interfering RNA reverses the resistance to apoptosis of C. trachomatis-infected cells. BAD phosphorylation is not maintained and it is not recruited to the inclusion of Chlamydia muridarum, which protects poorly against apoptosis. Thus, sequestration of BAD away from mitochondria provides C. trachomatis with a mechanism to protect the host cell from apoptosis via the interaction of a C. trachomatis-encoded inclusion protein with a host-cell phosphoserine-binding protein.
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infections in humans. These bacteria survive and replicate within a vacuole in the infected cell called an inclusion, producing up to a thousand bacteria per inclusion within a day of infection. Despite the large size of the inclusion, the infected cell survives long enough for the pathogens to complete their infection cycle and then infect new host cells. The researchers describe a novel mechanism for protection of the host cell by Chlamydia, namely activation of enzymes involved in host-cell survival. These enzymes, called kinases, cause the phosphorylation and inactivation of a protein, BAD, which can promote “cell suicide” (apoptosis) of uninfected cells. BAD phosphorylation is accompanied by recruitment of BAD to the chlamydial inclusion, where BAD binds to a cellular adapter protein, 14-3-3β. The adapter protein, in turn, is attracted to the inclusion by a membrane protein produced by Chlamydia. Thus, the chlamydial inclusion sequesters BAD away from mitochondria, where BAD could induce host-cell apoptosis. The cross talk between chlamydiae and host-cell signaling pathways demonstrates a novel mechanism of pathogen modulation of host-cell biology, and represents a potential therapeutic target for blocking infection by this prevalent pathogen.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.