16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthetischer Bionanoreaktor: mechanische und chemische Kontrolle der Permeabilität von Polymersom-Membranen

      , , , ,
      Angewandte Chemie
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Polymer vesicles.

          Vesicles are microscopic sacs that enclose a volume with a molecularly thin membrane. The membranes are generally self-directed assemblies of amphiphilic molecules with a dual hydrophilic-hydrophobic character. Biological amphiphiles form vesicles central to cell function and are principally lipids of molecular weight less than 1 kilodalton. Block copolymers that mimic lipid amphiphilicity can also self-assemble into vesicles in dilute solution, but polymer molecular weights can be orders of magnitude greater than those of lipids. Structural features of vesicles, as well as properties including stability, fluidity, and intermembrane dynamics, are greatly influenced by characteristics of the polymers. Future applications of polymer vesicles will rely on exploiting unique property-performance relations, but results to date already underscore the fact that biologically derived vesicles are but a small subset of what is physically and chemically possible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polymersomes: tough vesicles made from diblock copolymers.

            Vesicles were made from amphiphilic diblock copolymers and characterized by micromanipulation. The average molecular weight of the specific polymer studied, polyethyleneoxide-polyethylethylene (EO40-EE37), is several times greater than that of typical phospholipids in natural membranes. Both the membrane bending and area expansion moduli of electroformed polymersomes (polymer-based liposomes) fell within the range of lipid membrane measurements, but the giant polymersomes proved to be almost an order of magnitude tougher and sustained far greater areal strain before rupture. The polymersome membrane was also at least 10 times less permeable to water than common phospholipid bilayers. The results suggest a new class of synthetic thin-shelled capsules based on block copolymer chemistry.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A vesicle bioreactor as a step toward an artificial cell assembly.

              An Escherichia coli cell-free expression system is encapsulated in a phospholipid vesicle to build a cell-like bioreactor. Large unilamellar vesicles containing extracts are produced in an oil-extract emulsion. To form a bilayer the vesicles are transferred into a feeding solution that contains ribonucleotides and amino acids. Transcription-translation of plasmid genes is isolated in the vesicles. Whereas in bulk solution expression of enhanced GFP stops after 2 h, inside the vesicle permeability of the membrane to the feeding solution prolongs the expression for up to 5 h. To solve the energy and material limitations and increase the capacity of the reactor, the alpha-hemolysin pore protein from Staphylococcus aureus is expressed inside the vesicle to create a selective permeability for nutrients. The reactor can then sustain expression for up to 4 days with a protein production of 30 muM after 4 days. Oxygen diffusion and osmotic pressure are critical parameters to maintain expression and avoid vesicle burst.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie
                Angew. Chem.
                Wiley
                00448249
                April 27 2012
                April 27 2012
                March 21 2012
                : 124
                : 18
                : 4524-4527
                Article
                10.1002/ange.201108814
                3c697b61-1268-491b-b583-46845d4fd683
                © 2012

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article