2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Sekretion und Exkretion Funktionelle und morphologische Organisation der Zelle : 2. wissenschaftliche Konferenz der Gesellschaft Deutscher Naturforscher und Ärzte Schloß Reinhardsbrunn bei Friedrichroda 1964 

      Transportwege in den Harnkanälchen der Säugerniere

      other
      Springer Berlin Heidelberg

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          JUNCTIONAL COMPLEXES IN VARIOUS EPITHELIA

          The epithelia of a number of glands and cavitary organs of the rat and guinea pig have been surveyed, and in all cases investigated, a characteristic tripartite junctional complex has been found between adjacent cells. Although the complex differs in precise arrangement from one organ to another, it has been regularly encountered in the mucosal epithelia of the stomach, intestine, gall bladder, uterus, and oviduct; in the glandular epithelia of the liver, pancreas, parotid, stomach, and thyroid; in the epithelia of pancreatic, hepatic, and salivary ducts; and finally, between the epithelial cells of the nephron (proximal and distal convolution, collecting ducts). The elements of the complex, identified as zonula occludens (tight junction), zonula adhaerens (intermediary junction), and macula adhaerens (desmosome), occupy a juxtaluminal position and succeed each other in the order given in an apical-basal direction. The zonula occludens (tight junction) is characterized by fusion of the adjacent cell membranes resulting in obliteration of the intercellular space over variable distances. Within the obliterated zone, the dense outer leaflets of the adjoining cell membranes converge to form a single intermediate line. A diffuse band of dense cytoplasmic material is often associated with this junction, but its development varies from one epithelium to another. The zonula adhaerens (intermediate junction) is characterized by the presence of an intercellular space (∼200 A) occupied by homogeneous, apparently amorphous material of low density; by strict parallelism of the adjoining cell membranes over distances of 0.2 to 0.5 µ; and by conspicuous bands of dense material located in the subjacent cytoplasmic matrix. The desmosome or macula adhaerens is also characterized by the presence of an intercellular space (∼240 A) which, in this case, contains a central disc of dense material; by discrete cytoplasmic plaques disposed parallel to the inner leaflet of each cell membrane; and by the presence of bundles of cytoplasmic fibrils converging on the plaques. The zonula occludens appears to form a continuous belt-like attachment, whereas the desmosome is a discontinuous, button-like structure. The zomula adhaerens is continuous in most epithelia but discontinuous in some. Observations made during experimental hemoglobinuria in rats showed that the hemoglobin, which undergoes enough concentration in the nephron lumina to act as an electron-opaque mass tracer, does not penetrate the intercellular spaces beyond the zonula occludens. Similar observations were made in pancreatic acini and ducts where discharged zymogen served as a mass tracer. Hence the tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal." The desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An Electron Microscopic Study of the Intestinal Villus

            The intestinal pathway for absorbed fat was traced in thin sections of intestinal villi from rats fed corn oil by stomach tube after a fast of 24 to 40 hours. For electron microscopy the tissues were fixed in chilled buffered osmium tetroxide and embedded in methacrylate. For light microscopy, other specimens from the same animals were fixed in formal-calcium, mordanted in K2Cr2O7, and embedded in gelatin. Frozen sections were stained with Sudan black B or Sudan IV. About 20 minutes after feeding, small fat droplets (65 mµ maximal diameter) appear in the striated border between microvilli. At the same time fat particles are seen within pinocytotic vesicles in the immediately subjacent terminal web. In later specimens the fat droplets are generally larger (50 to 240 mµ) and lie deeper in the apical cytoplasm. All intracellular fat droplets are loosely enveloped in a thin membrane, the outer surface of which is sometimes studded with the fine particulate component of the cytoplasm. This envelope, apparently derived from the cell surface by pinocytosis, has at this stage evidently become a part of the endoplasmic reticulum. Just above the nucleus numerous fat droplets lie clustered within the dilated cisternae of the Golgi complex. As absorption progresses fat droplets appear in the intercellular spaces of the epithelium, in the interstitial connective tissue spaces of the lamina propria, and in the lumen of the lacteals. All of these extracellular fat droplets are devoid of a membranous envelope. The picture of fat absorption as reconstructed from these studies involves a stream of fat droplets filtering through the striated border, entering the epithelial cell by pinocytosis at the bases of the intermicrovillous spaces, and coursing through the endoplasmic reticulum to be discharged at the sides of the epithelial cell into extracellular spaces. From the epithelial spaces, the droplets move into the lamina propria and thence into the lymph. If the lumen of the endoplasmic reticulum is considered as continuous with the extracellular phase, then the entire pathway of fat absorption may be regarded as extracellular. However, it is impossible to evaluate from the electron microscopic evidence thus far available the quantitative importance of particulate fat absorption by the mechanism described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Electron Microscopic Study of the Intestinal Villus

              The structure of the intestinal villus of the rat was studied in thin sections of tissue fixed in buffered osmium tetroxide and embedded in methacrylate. The simple columnar epithelium investing the villus is surmounted by a striated border consisting of slender projections of the cell surface. These microvilli are arranged in almost crystalline, hexagonal array, and increase the apical surface area of the cell by a factor of 24. The core of each microvillus is filled with fine fibrils which arise from the filamentous substance of the terminal web underlying the striated border. Each microvillus is covered by a tubular extension of the plasma membrane of the epithelial cell. Pinocytotic vesicles originating from the plasma membrane occur at the bases of the intermicrovillous spaces. The nucleus, mitochondria, and the endoplasmic reticulum of the epithelial cell display no unusual features. Small bits of ergastoplasm occur in the apical cytoplasm. A thin basement membrane separates the epithelium from the lamina propria which consists of vessels, nerves, and numerous lymphocytes, eosinophiles, mast cells, plasma cells, smooth muscle fibers, and macrophages suspended in a delicate stroma of fibroblasts and collagen fibers. Intercellular fat droplets often occur in this stroma, even in animals fasted for 40 hours. The blood capillaries are distinguished by their extremely attenuated, fenestrated endothelial cells. The lacteal has a thicker endothelium which, although not fenestrated, appears to have significant interruptions, especially at the margins between neighboring lining cells. Strands of smooth muscle always accompany the lacteal but do not form an integral part of its wall. Unmyelinated nerves, many of which are too small to be distinguished with the light microscope, course through the lamina propria in association with the vessels. The nerve fibers evidently do not cross the basement membrane into the epithelium. Neuromuscular junctions or other terminal apparatus were not found.
                Bookmark

                Author and book information

                Book Chapter
                1965
                : 315-342
                10.1007/978-3-642-92908-3_17
                64bbc0d8-d3a4-4df8-b89b-a862e6c18d07
                History

                Comments

                Comment on this book

                Book chapters

                Similar content1,838

                Cited by2